465 research outputs found

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Iterative Joint Channel Estimation and Multi-User Detection for Multiple-Antenna Aided OFDM Systems

    No full text
    Multiple-Input-Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems have recently attracted substantial research interest. However, compared to Single-Input-Single-Output (SISO) systems, channel estimation in the MIMO scenario becomes more challenging, owing to the increased number of independent transmitter-receiver links to be estimated. In the context of the Bell LAyered Space-Time architecture (BLAST) or Space Division Multiple Access (SDMA) multi-user MIMO OFDM systems, none of the known channel estimation techniques allows the number of users to be higher than the number of receiver antennas, which is often referred to as a “rank-deficient” scenario, owing to the constraint imposed by the rank of the MIMO channel matrix. Against this background, in this paper we propose a new Genetic Algorithm (GA) assisted iterative Joint Channel Estimation and Multi-User Detection (GA-JCEMUD) approach for multi-user MIMO SDMA-OFDM systems, which provides an effective solution to the multi-user MIMO channel estimation problem in the above-mentioned rank-deficient scenario. Furthermore, the GAs invoked in the data detection literature can only provide a hard-decision output for the Forward Error Correction (FEC) or channel decoder, which inevitably limits the system’s achievable performance. By contrast, our proposed GA is capable of providing “soft” outputs and hence it becomes capable of achieving an improved performance with the aid of FEC decoders. A range of simulation results are provided to demonstrate the superiority of the proposed scheme. Index Terms—Channel estimation, genetic algorithm, multiple-input-multiple-output, multi-user detection, orthogonal frequency division multiplexing, space division multiple access

    Joint semiblind frequency offset and channel estimation for multiuser MIMO-OFDM uplink

    Get PDF
    A semiblind method is proposed for simultaneously estimating the carrier frequency offsets (CFOs) and channels of an uplink multiuser multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system. By incorporating the CFOs into the transmitted symbols and channels, the MIMO-OFDM with CFO is remodeled into an MIMO-OFDM without CFO. The known blind method for channel estimation (Zeng and Ng in 2004) (Y. H. Zeng and T. S. Ng, "A semi-blind channel estimation method for multi-user multi-antenna OFDM systems," IEEE Trans. Signal Process., vol. 52, no. 5, pp. 1419-1429, May 2004.) is then directly used for the remodeled system to obtain the shaped channels with an ambiguity matrix. A pilot OFDM block for each user is then exploited to resolve the CFOs and the ambiguity matrix. Two dedicated pilot designs, periodical and consecutive pilots, are discussed. Based on each pilot design and the estimated shaped channels, two methods are proposed to estimate the CFOs. As a result, based on the second-order statistics (SOS) of the received signal and one pilot OFDM block, the CFOs and channels are found simultaneously. Finally, a fast equalization method is given to recover the signals corrupted by the CFOs. © 2007 IEEE.published_or_final_versio

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Semi-blind CFO estimation and ICA based equalization for wireless communication systems

    Get PDF
    In this thesis, a number of semi-blind structures are proposed for Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication systems, with Carrier Frequency Offset (CFO) estimation and Independent Component Analysis (ICA) based equalization. In the first contribution, a semi-blind non-redundant single-user Multiple-Input Multiple-Output (MIMO) OFDM system is proposed, with a precoding aided CFO estimation approach and an ICA based equalization structure. A number of reference data sequences are carefully designed and selected from a pool of orthogonal sequences, killing two birds with one stone. On the one hand, the precoding based CFO estimation is performed by minimizing the sum cross-correlations between the CFO compensated signals and the rest of the orthogonal sequences in the pool. On the other hand, the same reference data sequences enable the elimination of permutation and quadrant ambiguities in the ICA equalized signals. Simulation results show that the proposed semi-blind MIMO OFDM system can achieve a Bit Error Rate (BER) performance close to the ideal case with perfect Channel State Information (CSI) and no CFO. In the second contribution, a low-complexity semi-blind structure, with a multi-CFO estimation method and an ICA based equalization scheme, is proposed for multiuser Coordinated Multi-Point (CoMP) OFDM systems. A short pilot is carefully designed offline for each user and has a two-fold advantage. On the one hand, using the pilot structure, a complex multi-dimensional search for multiple CFOs is divided into a number of low-complexity mono-dimensional searches. On the other hand, the cross-correlation between the transmitted and received pilots is explored to allow the simultaneous elimination of permutation and quadrant ambiguities in the ICA equalized signals. Simulation results show that the proposed semi-blind CoMP OFDM system can provide a BER performance close to the ideal case with perfect CSI and no CFO. In the third contribution, a semi-blind structure is proposed for Carrier Aggregation (CA) based CoMP Orthogonal Frequency Division Multiple Access (OFDMA) systems, with an ICA based joint Inter-Carrier Interference (ICI) mitigation and equalization scheme. The CFO-induced ICI is mitigated implicitly via ICA based equalization, without introducing feedback overhead for CFO correction. The permutation and quadrant ambiguities in the ICA equalized signals can be eliminated by a small number of pilots. Simulation results show that with a low training overhead, the proposed semi-blind equalization scheme can provide a BER performance close to the ideal case with perfect CSI and no CFO
    corecore