7 research outputs found

    Design of a Portable Drone for Educational Purposes

    Get PDF
    This paper discusses the design of a portable drone to be used by students for practical investigations of drone operating principles. The drone design is based on a Y6 frame module concept and takes into account the affordability and combinability of components which are widely available via the hobbyist drone manufacturing market. It is a foldable device and is protected against water ingress according standard DIN EN 60529 (IP01). The drone generates high thrust for a Maximum Take-off Mass (MTOM) of 5 kg and the propeller design has been investigated and analysed in detail to determine the optimum location required to provide maximum thrust

    Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery

    Get PDF
    Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website https://www.youtube.com/watch?v=_hdxX2xXkVQ

    Design Considerations for Autonomous Cargo Transportation Multirotor UAVs

    Get PDF
    Unmanned aerial vehicles (UAVs) have proven to be an advanced tool for a variety of applications in the civilian and military sectors. Different categories of UAVs are used in various missions and are also the subject of numerous researches. Due to their characteristics and potential in specific conditions, multirotor UAVs imposes itself as a solution for many tasks, including transport. This chapter presents a conceptual solution of autonomous cargo transportation where the primary research objective is the design of a heavy lift multirotor UAV system. The process of designing a multirotor UAV that can carry heavy lift cargo is quite challenging due to many parameters and constraints. Five selected series of electric propulsion systems are analyzed, with different multirotor configurations, and results are graphically displayed for payloads from 10 kg up to 100 kg

    Unmanned aerial vehicle for fire surveillance and monitoring

    Full text link
    [ES] Los incendios forestales siguen siendo uno de los grandes problemas ambientales a los que se enfrenta la sociedad en la actualidad. Además del gran impacto medioambiental, la destrucción de ecosistemas y las posibles pérdidas humanas, hay que añadir los costes económicos derivados de la lucha contra el fuego. Todos estos motivos han provocado que se busque en la tecnología actual, herramientas y sistemas que permitan ayudar en tareas de la lucha contra incendios y, más en concreto, el uso de Vehículos Aéreos No Tripulados (UAVs). El hecho de que los UAVs puedan alcanzar lugares remotos de manera rápida y, embarcar sensores y dispositivos que ayuden en tareas peligrosas y arriesgadas, los hacen idóneos para la lucha contra el fuego. En este trabajo recoge el desarrollo, en colaboración con Telefónica Digital España, de una aplicación innovadora haciendo uso de la tecnología más actual presente en la robótica, en la cual un dron es capaz de realizar tareas de vigilancia y monitorización de incendios de manera autónoma, gracias a los sensores y dispositivos embarcados en el mismo. Además, se implementa una interfaz gráfica que permita el intercambio de información entre la aeronave y el usuario en tierra.[EN] Forest fires continue to be one of the major environmental problems facing society today. In addition to the high environmental impact, the destruction of ecosystems and possible human losses, the economic costs of fire-fighting must be added. All these reasons have led to the search, in current technology, for tools and systems to help in fire-fighting tasks and, more specifically, the use of Unmanned Aerial Vehicles (UAVs). The fact that UAVs can reach remote locations quickly and embark on sensors anddevices to assist in dangerous and risky tasks makes them ideal for firefighting. This work includes the development, in collaborationwith Telefónica Digital España, of an effective tool using current technology present in robotics, in which a drone is capable of carrying out fire surveillance and monitoring tasks autonomously, thanks to the sensors and devices on board. In addition, a graphical interface is implemented that allows the exchange of information between the aircraft and the ground user.Este trabajo es financiado por el gobierno de la Comunidad de Madrid a traves de la Beca Doctorado Industrial (BECA ´ IND2017/TIC-7834). El laboratorio de Sistemas Inteligentes agradece TELEFONICA DIGITAL ESPANA, S.L.U. su ayuda y financiaci ˜ on a ´ traves del proyecto: ”Sistemas de UAV Aut ´ onomo para Super- ´ vision de Incendios Forestales”.Madridano, Á.; Campos, S.; Al-Kaff, A.; García, F.; Martín, D.; Escalera, A. (2020). Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial. 17(3). https://doi.org/10.4995/riai.2020.11806OJS263173Al-Ka, A., Moreno, F. M., de la Escalera, A., Armingol, J. M., 2017. Intelligent vehicle for search, rescue and transportation purposes. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE, pp. 110-115. https://doi.org/10.1109/SSRR.2017.8088148Albani, D., Nardi, D., Trianni, V., 2017. Field coverage and weed mapping by uav swarms. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4319-4325. https://doi.org/10.1109/IROS.2017.8206296Chen, K., Sun, Q., Zhou, A., Wang, S., 2018. Adaptive multiple task assignments for uavs using discrete particle swarm optimization. In: International Conference on Internet of Vehicles. Springer, pp. 220-229. https://doi.org/10.1007/978-3-030-05081-8_16Couceiro, M. S., Portugal, D., Ferreira, J. F., Rocha, R. P., 2019. Semfire: Towards a new generation of forestry maintenance multi-robot systems. In: 2019 IEEE/SICE International Symposium on System Integration (SII). IEEE, pp. 270-276. https://doi.org/10.1109/SII.2019.8700403Erdos, D., Erdos, A., Watkins, S. E., 2013. An experimental uav system for search and rescue challenge. IEEE Aerospace and Electronic Systems Magazine 28 (5), 32-37. https://doi.org/10.1109/MAES.2013.6516147Harikumar, K., Senthilnath, J., Sundaram, S., 2018. Multi-uav oxyrrhis marinainspired search and dynamic formation control for forest firefighting. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2018.2867614Imdoukh, A., Shaker, A., Al-Toukhy, A., Kablaoui, D., El-Abd, M., 2017. Semiautonomous indoor firefighting uav. In: 2017 18th International Conference on Advanced Robotics (ICAR). IEEE, pp. 310-315. https://doi.org/10.1109/ICAR.2017.8023625Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., Stachniss, C., 2017. Uav-based crop and weed classification for smart farming. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3024-3031. https://doi.org/10.1109/ICRA.2017.7989347Loureiro, M. L., Allo, M., 2018. Los incendios forestales y su impacto económico: Propuesta para una agenda investigadora. Revista Galega de Economía 27 (3), 129-142.Madridano, Á., Al-Kaff, A., Martín, D., et al., 2020. 3d trajectory planning method for uavs swarm in building emergencies. Sensors 20 (3), 642. https://doi.org/10.3390/s20030642Merino, L., Caballero, F., de Dios, J. R. M., Maza, I., Ollero, A., 2010. Automatic forest fire monitoring and measurement using unmanned aerial vehicles. In: Proceedings of the 6th International Congress on Forest Fire Research. Citeseer. https://doi.org/10.1007/978-94-007-3033-5_37Ostovar, A., Hellstrom, T., Ringdahl, O., 2016. Human detection based on infrared images in forestry environments. In: International Conference on Image Analysis and Recognition. Springer, pp. 175-182 https://doi.org/10.1007/978-3-319-41501-7_20Pajares, G., 2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles (uavs). Photogrammetric Engineering & Remote Sensing 81 (4), 281-330. https://doi.org/10.14358/PERS.81.4.281Pajares, G., Ruz, J. J., Lanillos, P., Guijarro, M., de la Cruz, J. M., Santos, M., 2008. Generacion de trayectorias y toma de decisiones para uavs. Revista Iberoamericana de Automática e Informática Industrial RIAI 5 (1), 83-92. https://doi.org/10.1016/S1697-7912(08)70125-0Qin, H., Cui, J. Q., Li, J., Bi, Y., Lan, M., Shan, M., Liu, W., Wang, K., Lin, F., Zhang, Y., et al., 2016. Design and implementation of an unmanned aerial vehicle for autonomous firefighting missions. In: 2016 12th IEEE International Conference on Control and Automation (ICCA). IEEE, pp. 62-67. https://doi.org/10.1109/ICCA.2016.7505253Toriz, A., Raygoza, M., Martínez, D., 2017. Modelo de inclusion tecnológica uav para la prevención de trabajos de alto riesgo, en industrias de la construcción basado en la metodología ivas. Revista Iberoamericana de Automática e Informática industrial 14 (1), 94-103. https://doi.org/10.1016/j.riai.2016.09.004Yuan, C., Liu, Z., Zhang, Y., 2016. Vision-based forest fire detection in aerial images for firefighting using uavs. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 1200-1205. https://doi.org/10.1109/ICUAS.2016.7502546Yuan, C., Liu, Z., Zhang, Y., 2017. Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles. Journal of Intelligent & Robotic Systems 88 (2-4), 635-654. https://doi.org/10.1007/s10846-016-0464-7Zharikova, M., Sherstjuk, V., 2019. Forest firefighting monitoring system based on uav team and remote sensing. In: Automated Systems in the Aviation and Aerospace Industries. IGI Global, pp. 220-241. https://doi.org/10.4018/978-1-5225-7709-6.ch00

    System Architectures for Cooperative Teams of Unmanned Aerial Vehicles Interacting Physically with the Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become quite a useful tool for a wide range of applications, from inspection & maintenance to search & rescue, among others. The capabilities of a single UAV can be extended or complemented by the deployment of more UAVs, so multi-UAV cooperative teams are becoming a trend. In that case, as di erent autopilots, heterogeneous platforms, and application-dependent software components have to be integrated, multi-UAV system architectures that are fexible and can adapt to the team's needs are required. In this thesis, we develop system architectures for cooperative teams of UAVs, paying special attention to applications that require physical interaction with the environment, which is typically unstructured. First, we implement some layers to abstract the high-level components from the hardware speci cs. Then we propose increasingly advanced architectures, from a single-UAV hierarchical navigation architecture to an architecture for a cooperative team of heterogeneous UAVs. All this work has been thoroughly tested in both simulation and eld experiments in di erent challenging scenarios through research projects and robotics competitions. Most of the applications required physical interaction with the environment, mainly in unstructured outdoors scenarios. All the know-how and lessons learned throughout the process are shared in this thesis, and all relevant code is publicly available.Los vehículos aéreos no tripulados (UAVs, del inglés Unmanned Aerial Vehicles) se han convertido en herramientas muy valiosas para un amplio espectro de aplicaciones, como inspección y mantenimiento, u operaciones de rescate, entre otras. Las capacidades de un único UAV pueden verse extendidas o complementadas al utilizar varios de estos vehículos simultáneamente, por lo que la tendencia actual es el uso de equipos cooperativos con múltiples UAVs. Para ello, es fundamental la integración de diferentes autopilotos, plataformas heterogéneas, y componentes software -que dependen de la aplicación-, por lo que se requieren arquitecturas multi-UAV que sean flexibles y adaptables a las necesidades del equipo. En esta tesis, se desarrollan arquitecturas para equipos cooperativos de UAVs, prestando una especial atención a aplicaciones que requieran de interacción física con el entorno, cuya naturaleza es típicamente no estructurada. Primero se proponen capas para abstraer a los componentes de alto nivel de las particularidades del hardware. Luego se desarrollan arquitecturas cada vez más avanzadas, desde una arquitectura de navegación para un único UAV, hasta una para un equipo cooperativo de UAVs heterogéneos. Todo el trabajo ha sido minuciosamente probado, tanto en simulación como en experimentos reales, en diferentes y complejos escenarios motivados por proyectos de investigación y competiciones de robótica. En la mayoría de las aplicaciones se requería de interacción física con el entorno, que es normalmente un escenario en exteriores no estructurado. A lo largo de la tesis, se comparten todo el conocimiento adquirido y las lecciones aprendidas en el proceso, y el código relevante está publicado como open-source
    corecore