109 research outputs found

    3D Ultrasound in the Management of Post Hemorrhagic Ventricle Dilatation

    Get PDF
    Enlargement of the cerebral ventricles is relatively common among extremely preterm neonates born before 28 weeks gestational age. One common cause of ventricle dilatation is post hemorrhagic ventricle dilatation following a bleed in the cerebral ventricles. While many neonates with PHVD will have spontaneous resolution of the condition, severe, persistent PHVD is associated with a greater risk of brain injury and morbidity later in life and left untreated can cause death. The current clinical management strategy consists of daily measurements of head circumference and qualitative interpretation of two-dimensional US images to detect ventricular enlargement and monitoring vital signs for indications increased intracranial pressure (i.e. apnea, bradycardia). Despite the widespread clinical use of these indicators, they do not have the specificity to reliably indicate when an intervention to remove some CSF is required to prevent brain damage. Early recognition of interventional necessity using quantitative measurements could help with the management of the disease, and could lead to better care in the future. Our objective was to develop and validate a three-dimensional ultrasound system for use within an incubator of neonates with PHVD in order to accurately measure the cerebral ventricle volume. This system was validated against known geometric phantoms as well as a custom ventricle-like phantom. Once validated, the system was used in a clinical study of 70 neonates with PHVD to measure the ventricle size. In addition to three-dimensional ultrasound, clinical ultrasound images, and MRIs were attained. Clinical measurements of the ventricles and three-dimensional ultrasound ventricle volumes were used to determine thresholds between neonates with PHVD who did and did not receive interventions based on current clinical management. We determined image based thresholds for intervention for both neonates who will receive an initial intervention, as well as those who will receive multiple interventions. Three-dimensional ultrasound based ventricle volume measurements had high sensitivity and specificity as patients with persistent PHVD have ventricles that increase in size faster than those who undergo resolution. This allowed for delineation between interventional and non-interventional patients within the first week of life. While this is still a small sample size study, these results can give rise to larger studies that would be able to determine if earlier intervention can result in better neurodevelopmental outcomes later in life

    3D MR Ventricle Segmentation in Pre-term Infants with Post-Hemorrhagic Ventricle Dilation

    Get PDF
    Intraventricular hemorrhage (IVH) or bleed within the brain is a common condition among pre-term infants that occurs in very low birth weight preterm neonates. The prognosis is further worsened by the development of progressive ventricular dilatation, i.e., post-hemorrhagic ventricle dilation (PHVD), which occurs in 10-30% of IVH patients. In practice, predicting PHVD accurately and determining if that specific patient with ventricular dilatation requires the ability to measure accurately ventricular volume. While monitoring of PHVD in infants is typically done by repeated US and not MRI, once the patient has been treated, the follow-up over the lifetime of the patient is done by MRI. While manual segmentation is still seen as a gold standard, it is extremely time consuming, and therefore not feasible in a clinical context, and it also has a large inter-and intra-observer variability. This paper proposes an segmentation algorithm to extract the cerebral ventricles from 3D T1-weighted MR images of pre-term infants with PHVD. The proposed segmentation algorithm makes use of the convex optimization technique combined with the learned priors of image intensities and label probabilistic map, which is built from a multi-atlas registration scheme. The leave-one-out cross validation using 7 PHVD patient T1 weighted MR images showed that the proposed method yielded a mean DSC of 89.7% +/- 4.2%, a MAD of 2.6 +/- 1.1 mm, a MAXD of 17.8 +/- 6.2 mm, and a VD of 11.6% +/- 5.9%, suggesting a good agreement with manual segmentations

    Dilatation of Lateral Ventricles with Brain Volumes in Infants with 3D Transfontanelle US

    Full text link
    Ultrasound (US) can be used to assess brain development in newborns, as MRI is challenging due to immobilization issues, and may require sedation. Dilatation of the lateral ventricles in the brain is a risk factor for poorer neurodevelopment outcomes in infants. Hence, 3D US has the ability to assess the volume of the lateral ventricles similar to clinically standard MRI, but manual segmentation is time consuming. The objective of this study is to develop an approach quantifying the ratio of lateral ventricular dilatation with respect to total brain volume using 3D US, which can assess the severity of macrocephaly. Automatic segmentation of the lateral ventricles is achieved with a multi-atlas deformable registration approach using locally linear correlation metrics for US-MRI fusion, followed by a refinement step using deformable mesh models. Total brain volume is estimated using a 3D ellipsoid modeling approach. Validation was performed on a cohort of 12 infants, ranging from 2 to 8.5 months old, where 3D US and MRI were used to compare brain volumes and segmented lateral ventricles. Automatically extracted volumes from 3D US show a high correlation and no statistically significant difference when compared to ground truth measurements. Differences in volume ratios was 6.0 +/- 4.8% compared to MRI, while lateral ventricular segmentation yielded a mean Dice coefficient of 70.8 +/- 3.6% and a mean absolute distance (MAD) of 0.88 +/- 0.2mm, demonstrating the clinical benefit of this tool in paediatric ultrasound

    Comprehensive Brain MRI Segmentation in High Risk Preterm Newborns

    Get PDF
    Most extremely preterm newborns exhibit cerebral atrophy/growth disturbances and white matter signal abnormalities on MRI at term-equivalent age. MRI brain volumes could serve as biomarkers for evaluating the effects of neonatal intensive care and predicting neurodevelopmental outcomes. This requires detailed, accurate, and reliable brain MRI segmentation methods. We describe our efforts to develop such methods in high risk newborns using a combination of manual and automated segmentation tools. After intensive efforts to accurately define structural boundaries, two trained raters independently performed manual segmentation of nine subcortical structures using axial T2-weighted MRI scans from 20 randomly selected extremely preterm infants. All scans were re-segmented by both raters to assess reliability. High intra-rater reliability was achieved, as assessed by repeatability and intra-class correlation coefficients (ICC range: 0.97 to 0.99) for all manually segmented regions. Inter-rater reliability was slightly lower (ICC range: 0.93 to 0.99). A semi-automated segmentation approach was developed that combined the parametric strengths of the Hidden Markov Random Field Expectation Maximization algorithm with non-parametric Parzen window classifier resulting in accurate white matter, gray matter, and CSF segmentation. Final manual correction of misclassification errors improved accuracy (similarity index range: 0.87 to 0.89) and facilitated objective quantification of white matter signal abnormalities. The semi-automated and manual methods were seamlessly integrated to generate full brain segmentation within two hours. This comprehensive approach can facilitate the evaluation of large cohorts to rigorously evaluate the utility of regional brain volumes as biomarkers of neonatal care and surrogate endpoints for neurodevelopmental outcomes

    Twin-singleton differences in neonatal brain structure

    Get PDF
    pre-printTwin studies suggest that global and regional brain volumes are highly heritable. However, estimates of heritability vary across development. Given that all twin studies are open to the potential criticism of non-generalizability due to differences in intrauterine environment between twins and singletons, these age effects may reflect the influence of perinatal environmental factors which are unique to twins and which may be especially evident early in life. To address this question, we compared brain volumes and the relationship of brain volumes to gestational age in 136 singletons (67 male, 69 female) and 154 twins (75 male, 79 female; 82 DZ, 72 MZ) who had received high resolution MRI scans of the brain in the first month of life. Intracranial volume, total white matter, and ventricle volumes did not differ between twins and singletons. However, cerebrospinal fluid and frontal white matter volume was greater in twins compared to singletons. While gray matter volumes at MRI did not differ between groups, the slope of the relationship between total and cortical gray matter and gestational age at the MRI scan was steeper in MZ twins compared to DZ twins. Post-hoc analyses suggested that gray matter development is delayed in MZ twins in utero and that they experience "catch-up" growth in the first month of life. These differences should be taken into account when interpreting and designing studies in the early postnatal period

    Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age.

    Get PDF
    INTRODUCTION: The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. METHODS: First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. RESULTS: The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice\u27s Kappa \u3e 0.79 and Euclidean distance CONCLUSIONS: MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth

    Volumétrie des ventricules latéraux chez le nouveau-né par segmentation automatique d’échographies 3D

    Get PDF
    Les nouvelles sondes échographiques d’ultrason (US) permettent d’acquérir des volumes de manière quasi instantanée et ce sans balayage. En comparaison avec les sondes deux dimensions (2D), ceci permet de diminuer le temps d’acquisition tout en ayant une qualité d’image similaire et potentiellement une meilleure confiance dans l’interprétation ou le diagnostic. L’évaluation ou le suivi du développement du cerveau et de la taille des ventricules est nécessaire pour plusieurs situations où le nouveau-né y est vulnérable comme dans des cas de naissances prématurées, d’hémorragie intraventriculaire (HIV), ou d’interventions chirurgicales. De plus, au niveau psychologique, une dilatation importante des ventricules latéraux est associée à divers troubles neurologiques ou retard de développement cognitif. Au niveau physique, une dilatation est associée à un développement altéré de la matière blanche et un volume anormal de matière grise corticale. Réaliser un suivi de la dilatation des ventricules latéraux peut donc permettre de déterminer si le nouveau-né est à risque d’avoir des effets négatifs sur son développement cognitif ou encore, pour les cas plus graves, si une intervention chirurgicale est nécessaire. Si une anormalité est trouvée en examen standard 2D US, une acquisition par imagerie par résonnance magnétique (IRM) peut être prescrite pour un examen approfondi. Cependant, l’IRM est difficile à utiliser pour imager le cerveau des nouveau-nés en raison de la contrainte d’immobilisation qui se traduit souvent par l’utilisation d’un sédatif. Donc une alternative pour suivre le développement du cerveau est d’utiliser une sonde matricielle avec une acquisition à travers la fontanelle qui est encore ouverte chez le nouveau-né de quelques mois. De plus, cette alternative permettrait de réaliser des analyses volumiques avec une méthode plus accessible et moins coûteuse que l’IRM. L’hypothèse du projet est que les images ultrasons acquises dans les premiers mois de vie du nouveau-né peuvent servir à évaluer le développement du cerveau et des ventricules latéraux en raison de la possibilité de réaliser des analyses volumiques quantitatives sur les volumes des ventricules latéraux et du cerveau. L’objectif du projet est donc de valider les volumes extraits des images tridimensionnelles (3D) US avec ceux de référence en IRM et de développer une méthodologie pour extraire automatiquement le volume du cerveau et des ventricules latéraux. Dans un premier temps, les ventricules latéraux sont segmentés manuellement sur les images IRM et 3D US acquises pour une première cohorte de patients. De plus, une méthode géométrique est développée afin d’estimer le volume du cerveau qui n’est pas inclus complètement par le faisceau d’acquisition. Cette méthode utilise un ellipsoïde pour modéliser la forme du cerveau où le volume peut donc être calculé avec les 3 semi-axes. Cette estimation du volume du cerveau est comparée à la mesure de circonférence de la tête, mesure pratiquée en clinique pour suivre le développement du cerveau, mais qui comporte plusieurs limitations. De plus, le ratio volumique ventricule-cerveau peut être calculé, ce qui permet d’évaluer la dilatation relative des ventricules par rapport au cerveau. Une étude comparative avec des tests statistiques est réalisée afin de valider les volumes extraits des images échographiques avec ceux de l’IRM qui représentent la vérité terrain. Les résultats démontrent qu’il n’y a aucune différence statistiquement significative entre les volumes extraits des images 3D US et des images IRM et qu’il y a une corrélation presque parfaite pour les ventricules latéraux (r=0.999) et une excellente corrélation pour le volume du cerveau (r=0.988). Ces analyses peuvent être réalisées sur les nouveau-nés jusqu’à l’âge d’environ 8 mois, âge où la fontanelle antérieure commence à se fermer empêchant les ondes acoustiques de passer. Dans un deuxième temps, le volume du cerveau est extrait automatiquement de l’image 3D US en isolant le cerveau du crâne et en appliquant la méthode géométrique développée. De plus, les ventricules latéraux ont été segmentés automatiquement sur 13 patients. Un recalage multi-atlas est d’abord réalisé avec des images IRM. Comme le recalage est multimodal, la différence des principes physiques des deux modalités d’imagerie le rend plus complexe et c’est pourquoi une métrique spécialement conçue pour le recalage US-IRM, la LC2 (Linear Correlation of Linear Combination) est utilisée. Les recalages sont suivis par une sélection des meilleures images et une fusion. Cependant, la LC2 ne permet pas de sélectionner automatiquement les meilleurs recalages entre différents atlas ou images IRM. Cette sélection est alors réalisée avec un terme de pondération de régions combiné à la LC2. La région ventriculaire est composée de deux sous-régions, la cavité de fluide qui est hypoéchogène et la choroïde plexus qui est hyperéchogène. Ce terme de pondération définit un poids pour chaque voxel de la région ventriculaire projetée, selon l’intensité et la position de ce voxel sur l’image échographique. Par la suite, deux algorithmes de fusion sont utilisés dans le projet, soit Majority Voting (MV) et STAPLE. Finalement, le résultat de la fusion est transformé en maillage et une déformation du maillage par minimisation d’énergie est implémentée pour finaliser la segmentation. Les résultats de segmentation démontrent une amélioration des résultats avec le terme de pondération par régions, la fusion, et le maillage déformable. Les résultats de segmentation finaux permettent d’avoir une précision adéquate en volume (DICE : 70.8%±3.6) et un faible écart des surfaces (Mean Absolute Distance : 0.88mm ± 0.20). Quant aux volumes du cerveau extraits automatiquement, ils ont une erreur absolue moyenne de 7.73% et une très bonne corrélation (r=0.942 ) comparativement à 3.12% et une excellente corrélation (r=0.988) lorsqu’ils sont extrait manuellement. De plus, les volumes des ventricules latéraux sont également extraits des segmentations (9.84% erreur absolue moyenne et r=0.848), ce qui permet de calculer le ratio volumique ventricule-cerveau automatiquement. Les travaux présentés dans ce mémoire ouvrent de nouvelles perspectives sur l’évaluation du développement du cerveau chez les nouveau-nés. Nos résultats démontrent qu’il est possible d’évaluer le volume du cerveau et des ventricules latéraux avec les nouvelles sondes matricielles d’échographies, ce qui pourrait augmenter l’accessibilité et la facilité des évaluations et des suivis réalisés en clinique. De plus, cela permet de calculer le ratio volumique ventriculecerveau afin d’évaluer la sévérité de la dilatation des ventricules relativement à la taille du cerveau.----------ABSTRACT New matrix-array ultrasound (US) probes allow neuroradiologists to acquire volumetric images almost instantly with no sweep of the region of interest. Compared to traditional 2D protocols, 3D US imaging decreases acquisition time without reducing image quality and could increase interpretation capabilities. Monitoring of the brain and lateral ventricles development is necessary especially in cases of premature birth, intraventricular hemorrhage (IVH) and surgical interventions. Significant ventricular dilatation is associated with some neurological disorders as well as lower scores on the Bayley scale of infant development and in some circumstances lower intelligence quotient (IQ). Furthermore, it is also associated with altered white matter development and abnormal volume of cortical gray matter. By monitoring the patients’ lateral ventricular dilatation, it is possible to determine if this is a risk factor for their cognitive development or if a surgical intervention is necessary in serious situations. If an abnormality is found with standard 2D US examinations, an MRI can be prescribed for a thorough examination. MRI is challenging with newborns due to immobilization issues, which requires most of the time sedation of the newborn. An alternative is to use recent matrix-array probes instead to perform non-invasive brain imaging through the fontanel. This will allow to perform volumetric analysis with an imaging method more accessible and less expensive than MRI. The project hypothesis is that it is possible to evaluate brain and ventricular development with the 3D US images and accomplish a series of quantitative volumetric measurements. The objective of this project is to validate the volumetric measurement of the 3D US images with the reference MRI and to develop a method to automatically extract the brain volume and segment the lateral ventricles in 3D US. The lateral ventricles volume is important to assess the progression of the dilatation before and after surgical interventions and to assess the severity of the dilatation. First, MRI and 3D US images are acquired for an initial cohort of 12 patients and the lateral ventricles are segmented manually in both imaging modalities. A geometric method is also developed in order to estimate the brain volume which is not fully captured by the limited US probe beam. This method uses an ellipsoid to model the brain shape where its volume is calculated with the 3 ellipsoid semi-axes. This brain volume estimation is compared to the head circumference (HC) which is a widely used method in clinical practice to follow brain development, although there are limitations associated with this approach. Ventricular-brain volume ratio is also calculated to assess the severity of the ventricular dilatation relatively to the brain size. A comparative study and statistical analysis are then undertaken to validate volumes obtained from 3D US images with those from MRI. Results show no statistically significant differences between the extracted MRI and 3D US volumes. Lateral ventricles have a near perfect correlation (r=0.999) and there is an excellent correlation for the brain volume (r=0.988). The difference in volume ratios was 6.0 ± 4.8% compared to MRI. Those analysis are possible on newborns and infants until they are approximately 8 months old, which is the age where the fontanelle starts to close, reducing the acoustic waves propagation. Secondly, the brain and lateral ventricles volumes are automatically extracted from the 3D US images. The brain volume is estimated with the same ellipsoid method after it has been aligned and stripped from the skull. The lateral ventricles were segmented on 13 patients using a multi-atlas registration pipeline with MRI images. Since this is a multimodal registration, a highly specific metric is used to register the MRI with the US images, the LC2 metric (Linear Correlation of Linear Combination). Then, the best registrations are selected for a label fusion but the LC2 alone doesn’t allow to automatically select the best registrations between several MRI images. An area weighting term is combined with the LC2 in order to improve the affine registration and to compare the registration results between several MRI images. The area weighting term assigns a weight to each voxel of the projected venricular area based on the position and intensity of the voxel on the US image. Indeed, the ventricular areas are divided in two areas, the fluid cavities which are hypoechoic and the plexus choroïd which is hyperechoic. These regions are used in the calculation of the weighting term. Two algorithms are tested for the label fusion, Majority Voting (MV) and STAPLE. Furthermore, the mesh is refined using deformable mesh model with an energy minimization process. The segmentation results are encouraging (DICE: 70.8±3.6, Mean Absolute Distance: 0.88± 0.20) and the extracted volumes have no statistically significant differences with the manual segmentations. The brain volumes have a mean absolute error with MRI volumes of 7.73% and a good correlation (r=0.942) when automatically segmented. As a comparison, the error was of 3.12% and the correlation excellent (r=0.988) with the manual measurements. In addition, the automatically extracted lateral ventricles volumes have a good correlation (r=0.848) with the manual segmentations and a mean absolute error of 9.84%. The methodology and results presented in this thesis show new perspectives and tools to help evaluate the infants’ brain development. This project demonstrates the potential of using new matrix-array US probes to assess brain and lateral ventricular volumes in newborns and infants which could be useful to facilitate monitoring of the lateral ventricles dilatation used for the macrocephaly diagnosis. Furthermore, it is possible to calculate the ventricular-brain volume ratio to assess the dilatation severity relatively to the brain volume

    Brain development in fetal ventriculomegaly

    No full text
    Introduction Fetal ventriculomegaly is the most common detectable central nervous system abnormality affecting 1% of fetuses and is associated with abnormal neurodevelopment in childhood. Neurodevelopmental outcome is partially predictable by the 2D size of the ventricles in the absence of other abnormalities while the aetiology of the dilatation remains unknown. The main aim of this study was to investigate brain development in the presence of isolated ventriculomegaly during fetal and neonatal life. Methods Fetal brain MRI (1.5T) was performed in 60 normal fetuses and 65 with isolated ventriculomegaly from 22-38 gestational weeks. Volumetric analysis of the ventricles and supratentorial brain structures was performed on 3D reconstructed datasets while cortical maturation was assessed using a detailed cortical scoring system. The metabolic profile of the fetal brain was assessed using magnetic resonance spectroscopy. During neonatal life, volumetric analysis of ventricular and supratentorial brain tissue was performed while white matter microstructure was assessed using Diffusion Tensor Imaging. The neurodevelopmental outcome of these children was evaluated at 1 and 2 years of age. Results Fetuses with isolated ventriculomegaly had significantly increased cortical volumes when compared to controls while cortical maturation of the calcarine sulcus and parieto-occipital fissure was delayed. NAA:Cho, MI:Cho and MI:Cr ratios were lower whilst Cho:Cr ratios were higher in fetuses with ventriculomegaly. Neonates with prenatally diagnosed ventriculomegaly had increased ventricular and supratentorial brain tissue volumes and reduced FA values in the splenium of the corpus callosum, sagittal striatum and corona radiata. At year 2 of age, only 37.5% of the children assessed had a normal neurodevelopment. Conclusions The presence of relative cortical overgrowth, delayed cortical maturation and aberrant white matter development in fetuses with ventriculomegaly may represent the neurobiological substrate for cognitive, language and behavioural deficits in these children
    • …
    corecore