5,385 research outputs found

    Client service capability matching

    Get PDF
    In order to tailor web-content to the requirements of a device, it is necessary to access information about the attributes of both the device and the web content Profiles containing such information from heterogeneous sources may use many different terms to represent the same concept (eg Resolution/Screen_Res/Res). This can present problems for applications which try to interpret the semantics of these terms In this thesis, we present an architecture which, when given profiles describing a device and web service, can identify terms that are present in an ontology of recognised terms in the domain of device capabilities and web service requirements The architecture can semi-automatically identify unknown terms by combining the results of several schemamatching applications. The ontology can be expanded based on end-user’s interaction with the semi-automatic matchers and thus over time the application’s ontology will grow to include previously unknown terms

    Machine Learning-Based Ontology Mapping Tool to Enable Interoperability in Coastal Sensor Networks

    Get PDF
    In today’s world, ontologies are being widely used for data integration tasks and solving information heterogeneity problems on the web because of their capability in providing explicit meaning to the information. The growing need to resolve the heterogeneities between different information systems within a domain of interest has led to the rapid development of individual ontologies by different organizations. These ontologies designed for a particular task could be a unique representation of their project needs. Thus, integrating distributed and heterogeneous ontologies by finding semantic correspondences between their concepts has become the key point to achieve interoperability among different representations. In this thesis, an advanced instance-based ontology matching algorithm has been proposed to enable data integration tasks in ocean sensor networks, whose data are highly heterogeneous in syntax, structure, and semantics. This provides a solution to the ontology mapping problem in such systems based on machine-learning methods and string-based methods

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Model-driven engineering techniques and tools for machine learning-enabled IoT applications: A scoping review

    Get PDF
    This paper reviews the literature on model-driven engineering (MDE) tools and languages for the internet of things (IoT). Due to the abundance of big data in the IoT, data analytics and machine learning (DAML) techniques play a key role in providing smart IoT applications. In particular, since a significant portion of the IoT data is sequential time series data, such as sensor data, time series analysis techniques are required. Therefore, IoT modeling languages and tools are expected to support DAML methods, including time series analysis techniques, out of the box. In this paper, we study and classify prior work in the literature through the mentioned lens and following the scoping review approach. Hence, the key underlying research questions are what MDE approaches, tools, and languages have been proposed and which ones have supported DAML techniques at the modeling level and in the scope of smart IoT services.info:eu-repo/semantics/publishedVersio
    corecore