18,879 research outputs found

    Acquisition and management of semantic web service descriptions

    Get PDF
    Abstract. The increasing importance and use of Web services have resulted in a number of efforts targeted at automating Web service discovery and composition based on semantic descriptions of their properties. However, the progress in the automation of Web service discovery is still held back by the fact that the description of Web services in terms of semantic metadata is still mainly manually. This Ph.D. thesis addresses this problem by developing an approach for the acquisition and management of semantic Web service descriptions in order to facilitate efficient service discovery and composition. Specifically, this involves the collection of information about a Web service, the acquisition of semantic descriptions based on the collected information, and the structured storage of the generated semantic descriptions.

    From software APIs to web service ontologies: a semi-automatic extraction method

    Get PDF
    Successful employment of semantic web services depends on the availability of high quality ontologies to describe the domains of these services. As always, building such ontologies is difficult and costly, thus hampering web service deployment. Our hypothesis is that since the functionality offered by a web service is reflected by the underlying software, domain ontologies could be built by analyzing the documentation of that software. We verify this hypothesis in the domain of RDF ontology storage tools.We implemented and fine-tuned a semi-automatic method to extract domain ontologies from software documentation. The quality of the extracted ontologies was verified against a high quality hand-built ontology of the same domain. Despite the low linguistic quality of the corpus, our method allows extracting a considerable amount of information for a domain ontology

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    A Semantic Web of Know-How: Linked Data for Community-Centric Tasks

    Full text link
    This paper proposes a novel framework for representing community know-how on the Semantic Web. Procedural knowledge generated by web communities typically takes the form of natural language instructions or videos and is largely unstructured. The absence of semantic structure impedes the deployment of many useful applications, in particular the ability to discover and integrate know-how automatically. We discuss the characteristics of community know-how and argue that existing knowledge representation frameworks fail to represent it adequately. We present a novel framework for representing the semantic structure of community know-how and demonstrate the feasibility of our approach by providing a concrete implementation which includes a method for automatically acquiring procedural knowledge for real-world tasks.Comment: 6th International Workshop on Web Intelligence & Communities (WIC14), Proceedings of the companion publication of the 23rd International Conference on World Wide Web (WWW 2014

    A Framework for Design and Composition of Semantic Web Services

    Get PDF
    Semantic Web Services (SWS) are Web Services (WS) whose description is semantically enhanced with markup languages (e.g., OWL-S). This semantic description will enable external agents and programs to discover, compose and invoke SWSs. However, as a previous step to the specification of SWSs in a language, it must be designed at a conceptual level to guarantee its correctness and avoid inconsistencies among its internal components. In this paper, we present a framework for design and (semi) automatic composition of SWSs at a language-independent and knowledge level. This framework is based on a stack of ontologies that (1) describe the different parts of a SWS; and (2) contain a set of axioms that are really design rules to be verified by the ontology instances. Based on these ontologies, design and composition of SWSs can be viewed as the correct instantiation of the ontologies themselves. Once these instances have been created they will be exported to SWS languages such as OWL-S

    Improving Knowledge Retrieval in Digital Libraries Applying Intelligent Techniques

    Get PDF
    Nowadays an enormous quantity of heterogeneous and distributed information is stored in the digital University. Exploring online collections to find knowledge relevant to a user’s interests is a challenging work. The artificial intelligence and Semantic Web provide a common framework that allows knowledge to be shared and reused in an efficient way. In this work we propose a comprehensive approach for discovering E-learning objects in large digital collections based on analysis of recorded semantic metadata in those objects and the application of expert system technologies. We have used Case Based-Reasoning methodology to develop a prototype for supporting efficient retrieval knowledge from online repositories. We suggest a conceptual architecture for a semantic search engine. OntoUS is a collaborative effort that proposes a new form of interaction between users and digital libraries, where the latter are adapted to users and their surroundings

    Enterprise engineering using semantic technologies

    No full text
    Modern Enterprises are facing unprecedented challenges in every aspect of their businesses: from marketing research, invention of products, prototyping, production, sales to billing. Innovation is the key to enhancing enterprise performances and knowledge is the main driving force in creating innovation. The identification and effective management of valuable knowledge, however, remains an illusive topic. Knowledge management (KM) techniques, such as enterprise process modelling, have long been recognised for their value and practiced as part of normal business. There are plentiful of KM techniques. However, what is still lacking is a holistic KM approach that enables one to fully connect KM efforts with existing business knowledge and practices already in IT systems, such as organisational memories. To address this problem, we present an integrated three-dimensional KM approach that supports innovative semantics technologies. Its automated formal methods allow us to tap into modern business practices and capitalise on existing knowledge. It closes the knowledge management cycle with user feedback loops. Since we are making use of reliable existing knowledge and methods, new knowledge can be extracted with less effort comparing with another method where new information has to be created from scratch

    WebPicker: Knowledge Extraction from Web Resources

    Get PDF
    We show how information distributed in several web resources and represented in different restricted languages can be extracted from its original sources and transformed into a common knowledge model represented in XML using WebPicker. This information, which has been built to cover different needs and functionalities, can be later imported into WebODE, integrated, enriched and exported into different representation formats using WebODE specific modules. We show a case study in the e-commerce domain, using products and services standards from several organizations and/or joint initiatives of industrial and services companies, and a product catalogue from an e-commerce platform
    • 

    corecore