3,247 research outputs found

    Transfer Learning using Computational Intelligence: A Survey

    Get PDF
    Abstract Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar problems much more quickly and effectively. In contrast to classical machine learning methods, transfer learning methods exploit the knowledge accumulated from data in auxiliary domains to facilitate predictive modeling consisting of different data patterns in the current domain. To improve the performance of existing transfer learning methods and handle the knowledge transfer process in real-world systems, ..

    Emotion-aware cross-modal domain adaptation in video sequences

    Get PDF

    Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A review

    Full text link
    Cancer remains one of the most challenging diseases to treat in the medical field. Machine learning has enabled in-depth analysis of rich multi-omics profiles and medical imaging for cancer diagnosis and prognosis. Despite these advancements, machine learning models face challenges stemming from limited labeled sample sizes, the intricate interplay of high-dimensionality data types, the inherent heterogeneity observed among patients and within tumors, and concerns about interpretability and consistency with existing biomedical knowledge. One approach to surmount these challenges is to integrate biomedical knowledge into data-driven models, which has proven potential to improve the accuracy, robustness, and interpretability of model results. Here, we review the state-of-the-art machine learning studies that adopted the fusion of biomedical knowledge and data, termed knowledge-informed machine learning, for cancer diagnosis and prognosis. Emphasizing the properties inherent in four primary data types including clinical, imaging, molecular, and treatment data, we highlight modeling considerations relevant to these contexts. We provide an overview of diverse forms of knowledge representation and current strategies of knowledge integration into machine learning pipelines with concrete examples. We conclude the review article by discussing future directions to advance cancer research through knowledge-informed machine learning.Comment: 41 pages, 4 figures, 2 table

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    A novel Auto-ML Framework for Sarcasm Detection

    Get PDF
    Many domains have sarcasm or verbal irony presented in the text of reviews, tweets, comments, and dialog discussions. The purpose of this research is to classify sarcasm for multiple domains using the deep learning based AutoML framework. The proposed AutoML framework has five models in the model search pipeline, these five models are the combination of convolutional neural network (CNN), Long Short-Term Memory (LSTM), deep neural network (DNN), and Bidirectional Long Short-Term Memory (BiLSTM). The hybrid combination of CNN, LSTM, and DNN models are presented as CNN-LSTM-DNN, LSTM-DNN, BiLSTM-DNN, and CNN-BiLSTM-DNN. This work has proposed the algorithms that contrast polarities between terms and phrases, which are categorized into implicit and explicit incongruity categories. The incongruity and pragmatic features like punctuation, exclamation marks, and others integrated into the AutoML DeepConcat framework models. That integration was possible when the DeepConcat AutoML framework initiate a model search pipeline for five models to achieve better performance. Conceptually, DeepConcat means that model will integrate with generalized features. It was evident that the pretrain model BiLSTM achieved a better performance of 0.98 F1 when compared with the other five model performances. Similarly, the AutoML based BiLSTM-DNN model achieved the best performance of 0.98 F1, which is better than core approaches and existing state-of-the-art Tweeter tweet dataset, Amazon reviews, and dialog discussion comments. The proposed AutoML framework has compared performance metrics F1 and AUC and discovered that F1 is better than AUC. The integration of all feature categories achieved a better performance than the individual category of pragmatic and incongruity features. This research also evaluated the performance of the dropout layer hyperparameter and it achieved better performance than the fixed percentage like 10% of dropout parameter of the AutoML based Bayesian optimization. Proposed AutoML framework DeepConcat evaluated best pretrain models BiLSTM-DNN and CNN-CNN-DNN to transfer knowledge across domains like Amazon reviews and Dialog discussion comments (text) using the last strategy, full layer, and our fade-out freezing strategies. In the transfer learning fade-out strategy outperformed the existing state-of-the-art model BiLSTM-DNN, the performance is 0.98 F1 on tweets, 0.85 F1 on Amazon reviews, and 0.87 F1 on the dialog discussion SCV2-Gen dataset. Further, all strategies with various domains can be compared for the best model selection

    Active Learning for Reducing Labeling Effort in Text Classification Tasks

    Get PDF
    Labeling data can be an expensive task as it is usually performed manually by domain experts. This is cumbersome for deep learning, as it is dependent on large labeled datasets. Active learning (AL) is a paradigm that aims to reduce labeling effort by only using the data which the used model deems most informative. Little research has been done on AL in a text classification setting and next to none has involved the more recent, state-of-the-art Natural Language Processing (NLP) models. Here, we present an empirical study that compares different uncertainty-based algorithms with BERTbase_{base} as the used classifier. We evaluate the algorithms on two NLP classification datasets: Stanford Sentiment Treebank and KvK-Frontpages. Additionally, we explore heuristics that aim to solve presupposed problems of uncertainty-based AL; namely, that it is unscalable and that it is prone to selecting outliers. Furthermore, we explore the influence of the query-pool size on the performance of AL. Whereas it was found that the proposed heuristics for AL did not improve performance of AL; our results show that using uncertainty-based AL with BERTbase_{base} outperforms random sampling of data. This difference in performance can decrease as the query-pool size gets larger.Comment: Accepted as a conference paper at the joint 33rd Benelux Conference on Artificial Intelligence and the 30th Belgian Dutch Conference on Machine Learning (BNAIC/BENELEARN 2021). This camera-ready version submitted to BNAIC/BENELEARN, adds several improvements including a more thorough discussion of related work plus an extended discussion section. 28 pages including references and appendice

    Deep Transfer Learning Applications in Intrusion Detection Systems: A Comprehensive Review

    Full text link
    Globally, the external Internet is increasingly being connected to the contemporary industrial control system. As a result, there is an immediate need to protect the network from several threats. The key infrastructure of industrial activity may be protected from harm by using an intrusion detection system (IDS), a preventive measure mechanism, to recognize new kinds of dangerous threats and hostile activities. The most recent artificial intelligence (AI) techniques used to create IDS in many kinds of industrial control networks are examined in this study, with a particular emphasis on IDS-based deep transfer learning (DTL). This latter can be seen as a type of information fusion that merge, and/or adapt knowledge from multiple domains to enhance the performance of the target task, particularly when the labeled data in the target domain is scarce. Publications issued after 2015 were taken into account. These selected publications were divided into three categories: DTL-only and IDS-only are involved in the introduction and background, and DTL-based IDS papers are involved in the core papers of this review. Researchers will be able to have a better grasp of the current state of DTL approaches used in IDS in many different types of networks by reading this review paper. Other useful information, such as the datasets used, the sort of DTL employed, the pre-trained network, IDS techniques, the evaluation metrics including accuracy/F-score and false alarm rate (FAR), and the improvement gained, were also covered. The algorithms, and methods used in several studies, or illustrate deeply and clearly the principle in any DTL-based IDS subcategory are presented to the reader

    Data driven methods for updating fault detection and diagnosis system in chemical processes

    Get PDF
    Modern industrial processes are becoming more complex, and consequently monitoring them has become a challenging task. Fault Detection and Diagnosis (FDD) as a key element of process monitoring, needs to be investigated because of its essential role in decision making processes. Among available FDD methods, data driven approaches are currently receiving increasing attention because of their relative simplicity in implementation. Regardless of FDD types, one of the main traits of reliable FDD systems is their ability of being updated while new conditions that were not considered at their initial training appear in the process. These new conditions would emerge either gradually or abruptly, but they have the same level of importance as in both cases they lead to FDD poor performance. For addressing updating tasks, some methods have been proposed, but mainly not in research area of chemical engineering. They could be categorized to those that are dedicated to managing Concept Drift (CD) (that appear gradually), and those that deal with novel classes (that appear abruptly). The available methods, mainly, in addition to the lack of clear strategies for updating, suffer from performance weaknesses and inefficient required time of training, as reported. Accordingly, this thesis is mainly dedicated to data driven FDD updating in chemical processes. The proposed schemes for handling novel classes of faults are based on unsupervised methods, while for coping with CD both supervised and unsupervised updating frameworks have been investigated. Furthermore, for enhancing the functionality of FDD systems, some major methods of data processing, including imputation of missing values, feature selection, and feature extension have been investigated. The suggested algorithms and frameworks for FDD updating have been evaluated through different benchmarks and scenarios. As a part of the results, the suggested algorithms for supervised handling CD surpass the performance of the traditional incremental learning in regard to MGM score (defined dimensionless score based on weighted F1 score and training time) even up to 50% improvement. This improvement is achieved by proposed algorithms that detect and forget redundant information as well as properly adjusting the data window for timely updating and retraining the fault detection system. Moreover, the proposed unsupervised FDD updating framework for dealing with novel faults in static and dynamic process conditions achieves up to 90% in terms of the NPP score (defined dimensionless score based on number of the correct predicted class of samples). This result relies on an innovative framework that is able to assign samples either to new classes or to available classes by exploiting one class classification techniques and clustering approaches.Los procesos industriales modernos son cada vez más complejos y, en consecuencia, su control se ha convertido en una tarea desafiante. La detección y el diagnóstico de fallos (FDD), como un elemento clave de la supervisión del proceso, deben ser investigados debido a su papel esencial en los procesos de toma de decisiones. Entre los métodos disponibles de FDD, los enfoques basados en datos están recibiendo una atención creciente debido a su relativa simplicidad en la implementación. Independientemente de los tipos de FDD, una de las principales características de los sistemas FDD confiables es su capacidad de actualización, mientras que las nuevas condiciones que no fueron consideradas en su entrenamiento inicial, ahora aparecen en el proceso. Estas nuevas condiciones pueden surgir de forma gradual o abrupta, pero tienen el mismo nivel de importancia ya que en ambos casos conducen al bajo rendimiento de FDD. Para abordar las tareas de actualización, se han propuesto algunos métodos, pero no mayoritariamente en el área de investigación de la ingeniería química. Podrían ser categorizados en los que están dedicados a manejar Concept Drift (CD) (que aparecen gradualmente), y a los que tratan con clases nuevas (que aparecen abruptamente). Los métodos disponibles, además de la falta de estrategias claras para la actualización, sufren debilidades en su funcionamiento y de un tiempo de capacitación ineficiente, como se ha referenciado. En consecuencia, esta tesis está dedicada principalmente a la actualización de FDD impulsada por datos en procesos químicos. Los esquemas propuestos para manejar nuevas clases de fallos se basan en métodos no supervisados, mientras que para hacer frente a la CD se han investigado los marcos de actualización supervisados y no supervisados. Además, para mejorar la funcionalidad de los sistemas FDD, se han investigado algunos de los principales métodos de procesamiento de datos, incluida la imputación de valores perdidos, la selección de características y la extensión de características. Los algoritmos y marcos sugeridos para la actualización de FDD han sido evaluados a través de diferentes puntos de referencia y escenarios. Como parte de los resultados, los algoritmos sugeridos para el CD de manejo supervisado superan el rendimiento del aprendizaje incremental tradicional con respecto al puntaje MGM (puntuación adimensional definida basada en el puntaje F1 ponderado y el tiempo de entrenamiento) hasta en un 50% de mejora. Esta mejora se logra mediante los algoritmos propuestos que detectan y olvidan la información redundante, así como ajustan correctamente la ventana de datos para la actualización oportuna y el reciclaje del sistema de detección de fallas. Además, el marco de actualización FDD no supervisado propuesto para tratar fallas nuevas en condiciones de proceso estáticas y dinámicas logra hasta 90% en términos de la puntuación de NPP (puntuación adimensional definida basada en el número de la clase de muestras correcta predicha). Este resultado se basa en un marco innovador que puede asignar muestras a clases nuevas o a clases disponibles explotando una clase de técnicas de clasificación y enfoques de agrupamientoPostprint (published version
    • …
    corecore