11,001 research outputs found

    A Clustering Algorithm Based on an Ensemble of Dissimilarities: An Application in the Bioinformatics Domain

    Get PDF
    Clustering algorithms such as k-means depend heavily on choosing an appropriate distance metric that reflect accurately the object proximities. A wide range of dissimilarities may be defined that often lead to different clustering results. Choosing the best dissimilarity is an ill-posed problem and learning a general distance from the data is a complex task, particularly for high dimensional problems. Therefore, an appealing approach is to learn an ensemble of dissimilarities. In this paper, we have developed a semi-supervised clustering algorithm that learns a linear combination of dissimilarities considering incomplete knowledge in the form of pairwise constraints. The minimization of the loss function is based on a robust and efficient quadratic optimization algorithm. Besides, a regularization term is considered that controls the complexity of the distance metric learned avoiding overfitting. The algorithm has been applied to the identification of tumor samples using the gene expression profiles, where domain experts provide often incomplete knowledge in the form of pairwise constraints. We report that the algorithm proposed outperforms a standard semi-supervised clustering technique available in the literature and clustering results based on a single dissimilarity. The improvement is particularly relevant for applications with high level of noise

    Multi-view constrained clustering with an incomplete mapping between views

    Full text link
    Multi-view learning algorithms typically assume a complete bipartite mapping between the different views in order to exchange information during the learning process. However, many applications provide only a partial mapping between the views, creating a challenge for current methods. To address this problem, we propose a multi-view algorithm based on constrained clustering that can operate with an incomplete mapping. Given a set of pairwise constraints in each view, our approach propagates these constraints using a local similarity measure to those instances that can be mapped to the other views, allowing the propagated constraints to be transferred across views via the partial mapping. It uses co-EM to iteratively estimate the propagation within each view based on the current clustering model, transfer the constraints across views, and then update the clustering model. By alternating the learning process between views, this approach produces a unified clustering model that is consistent with all views. We show that this approach significantly improves clustering performance over several other methods for transferring constraints and allows multi-view clustering to be reliably applied when given a limited mapping between the views. Our evaluation reveals that the propagated constraints have high precision with respect to the true clusters in the data, explaining their benefit to clustering performance in both single- and multi-view learning scenarios
    • …
    corecore