11 research outputs found

    On the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link Prediction Methods

    Full text link
    In this work, we take a closer look at the evaluation of two families of methods for enriching information from knowledge graphs: Link Prediction and Entity Alignment. In the current experimental setting, multiple different scores are employed to assess different aspects of model performance. We analyze the informativeness of these evaluation measures and identify several shortcomings. In particular, we demonstrate that all existing scores can hardly be used to compare results across different datasets. Moreover, we demonstrate that varying size of the test size automatically has impact on the performance of the same model based on commonly used metrics for the Entity Alignment task. We show that this leads to various problems in the interpretation of results, which may support misleading conclusions. Therefore, we propose adjustments to the evaluation and demonstrate empirically how this supports a fair, comparable, and interpretable assessment of model performance. Our code is available at https://github.com/mberr/rank-based-evaluation

    Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation

    Full text link
    Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.Comment: Accepted by the 34th AAAI Conference on Artificial Intelligence (AAAI 2020

    Collective Entity Alignment via Adaptive Features

    Full text link
    Entity alignment (EA) identifies entities that refer to the same real-world object but locate in different knowledge graphs (KGs), and has been harnessed for KG construction and integration. When generating EA results, current solutions treat entities independently and fail to take into account the interdependence between entities. To fill this gap, we propose a collective EA framework. We first employ three representative features, i.e., structural, semantic and string signals, which are adapted to capture different aspects of the similarity between entities in heterogeneous KGs. In order to make collective EA decisions, we formulate EA as the classical stable matching problem, which is further effectively solved by deferred acceptance algorithm. Our proposal is evaluated on both cross-lingual and mono-lingual EA benchmarks against state-of-the-art solutions, and the empirical results verify its effectiveness and superiority.Comment: ICDE2
    corecore