1,163 research outputs found

    Domain Adaptation via Minimax Entropy for Real/Bogus Classification of Astronomical Alerts

    Full text link
    Time domain astronomy is advancing towards the analysis of multiple massive datasets in real time, prompting the development of multi-stream machine learning models. In this work, we study Domain Adaptation (DA) for real/bogus classification of astronomical alerts using four different datasets: HiTS, DES, ATLAS, and ZTF. We study the domain shift between these datasets, and improve a naive deep learning classification model by using a fine tuning approach and semi-supervised deep DA via Minimax Entropy (MME). We compare the balanced accuracy of these models for different source-target scenarios. We find that both the fine tuning and MME models improve significantly the base model with as few as one labeled item per class coming from the target dataset, but that the MME does not compromise its performance on the source dataset

    Semi-supervised Domain Adaptation on Graphs with Contrastive Learning and Minimax Entropy

    Full text link
    Label scarcity in a graph is frequently encountered in real-world applications due to the high cost of data labeling. To this end, semi-supervised domain adaptation (SSDA) on graphs aims to leverage the knowledge of a labeled source graph to aid in node classification on a target graph with limited labels. SSDA tasks need to overcome the domain gap between the source and target graphs. However, to date, this challenging research problem has yet to be formally considered by the existing approaches designed for cross-graph node classification. To tackle the SSDA problem on graphs, a novel method called SemiGCL is proposed, which benefits from graph contrastive learning and minimax entropy training. SemiGCL generates informative node representations by contrasting the representations learned from a graph's local and global views. Additionally, SemiGCL is adversarially optimized with the entropy loss of unlabeled target nodes to reduce domain divergence. Experimental results on benchmark datasets demonstrate that SemiGCL outperforms the state-of-the-art baselines on the SSDA tasks

    Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings

    Full text link
    Generalizing deep neural networks to new target domains is critical to their real-world utility. In practice, it may be feasible to get some target data labeled, but to be cost-effective it is desirable to select a maximally-informative subset via active learning (AL). We study the problem of AL under a domain shift, called Active Domain Adaptation (Active DA). We empirically demonstrate how existing AL approaches based solely on model uncertainty or diversity sampling are suboptimal for Active DA. Our algorithm, Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings (ADA-CLUE), i) identifies target instances for labeling that are both uncertain under the model and diverse in feature space, and ii) leverages the available source and target data for adaptation by optimizing a semi-supervised adversarial entropy loss that is complementary to our active sampling objective. On standard image classification-based domain adaptation benchmarks, ADA-CLUE consistently outperforms competing active adaptation, active learning, and domain adaptation methods across domain shifts of varying severity

    Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation

    Full text link
    Appearance changes due to weather and seasonal conditions represent a strong impediment to the robust implementation of machine learning systems in outdoor robotics. While supervised learning optimises a model for the training domain, it will deliver degraded performance in application domains that underlie distributional shifts caused by these changes. Traditionally, this problem has been addressed via the collection of labelled data in multiple domains or by imposing priors on the type of shift between both domains. We frame the problem in the context of unsupervised domain adaptation and develop a framework for applying adversarial techniques to adapt popular, state-of-the-art network architectures with the additional objective to align features across domains. Moreover, as adversarial training is notoriously unstable, we first perform an extensive ablation study, adapting many techniques known to stabilise generative adversarial networks, and evaluate on a surrogate classification task with the same appearance change. The distilled insights are applied to the problem of free-space segmentation for motion planning in autonomous driving.Comment: In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017
    • …
    corecore