5 research outputs found

    Semi-Supervised Cross Feature Learning for Semantic Concept Detection in Videos

    No full text

    Feature based dynamic intra-video indexing

    Get PDF
    A thesis submitted in partial fulfillment for the degree of Doctor of PhilosophyWith the advent of digital imagery and its wide spread application in all vistas of life, it has become an important component in the world of communication. Video content ranging from broadcast news, sports, personal videos, surveillance, movies and entertainment and similar domains is increasing exponentially in quantity and it is becoming a challenge to retrieve content of interest from the corpora. This has led to an increased interest amongst the researchers to investigate concepts of video structure analysis, feature extraction, content annotation, tagging, video indexing, querying and retrieval to fulfil the requirements. However, most of the previous work is confined within specific domain and constrained by the quality, processing and storage capabilities. This thesis presents a novel framework agglomerating the established approaches from feature extraction to browsing in one system of content based video retrieval. The proposed framework significantly fills the gap identified while satisfying the imposed constraints of processing, storage, quality and retrieval times. The output entails a framework, methodology and prototype application to allow the user to efficiently and effectively retrieved content of interest such as age, gender and activity by specifying the relevant query. Experiments have shown plausible results with an average precision and recall of 0.91 and 0.92 respectively for face detection using Haar wavelets based approach. Precision of age ranges from 0.82 to 0.91 and recall from 0.78 to 0.84. The recognition of gender gives better precision with males (0.89) compared to females while recall gives a higher value with females (0.92). Activity of the subject has been detected using Hough transform and classified using Hiddell Markov Model. A comprehensive dataset to support similar studies has also been developed as part of the research process. A Graphical User Interface (GUI) providing a friendly and intuitive interface has been integrated into the developed system to facilitate the retrieval process. The comparison results of the intraclass correlation coefficient (ICC) shows that the performance of the system closely resembles with that of the human annotator. The performance has been optimised for time and error rate

    Supervised And Semi-supervised Learning Using Informative Feature Subspaces

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2010Web madenciliği, biyoinformatik ve konuşma tanıma gibi birçok farklı alanda çok yüksek miktarda etiketsiz veri ve farklı öznitelik uzayları bulunmaktadır. Birlikte öğrenme (Co-training) algoritması gibi yarı-eğitmenli algoritmalar etiketsiz verinin kullanımını amaçlamaktadır. Rastgele öznitelik alt uzayları (RAS) metodu farklı öznitelik alt uzaylarını kullanarak sınıflandırıcı eğitmeyi ve bu sınıflandırıcıları, topluluklarda birleştirmeyi amaçlamaktadır. Bu tez çalışmasında, sınıflandırıcı toplulukları için ilişkili öznitelik alt uzayları rastgele seçilerek; bilgi içeren ve çeşitliliği sağlanmış öznitelik alt uzaylarının oluşturulması sağlanmıştır. Oluşturulan sınıflandırıcı toplulukları, eğitmenli ve yarı-eğitmenli öğrenme için kullanılmıştır. Önerdiğimiz ilk yöntem, öznitelik alt uzaylarını karşılıklı bilgi miktarına bağlı ilişki değerlerini kullanarak seçmektedir. Bu yöntem Rel-RAS (eğitmenli) ve Rel-RASCO (yarı-eğitmenli) algoritmalarında kullanılmıştır. İkinci yöntem, ilişkili ve artık olmayan öznitelik alt uzaylarını seçmek için, mRMR (en düşük artıklık ve en yüksek ilişkili) öznitelik seçme algoritmasının değiştirilmiş şeklini kullanmaktadır. Bu yöntem mRMR-RAS (eğitmenli) ve mRMR-RASCO (yarı-eğitmenli) algoritmalarında kullanılmıştır. Önerilen yöntemlerin deneysel analizleri belirli sayıda veri kümesinde gerçekleştirilmiş ve mevcut yöntemlerle karşılaştırılmıştır. Aynı zamanda önerilen yöntemlerle oluşturulmuş sınıflandırıcı topluluklarının teorik analizleri; Kohavi Wolpert (KW) varyans, bilgi kuramı tabanlı düşük düzeyli çeşitlilik (LOD) ve bilgi kuramı sayısı (ITS) kullanılarak gerçekleştirilmiştir. LOD ve KW-varyansının davranışları arasında benzerlik bulunmuş ve topluluk sınıflandırma başarımının ITS ile açıklanabileceği görülmüştür.In many different fields, such as web mining, bioinformatics, speech recognition, there is an abundance of unlabeled data and different feature views. Semi-supervised learning algorithms such as Co-training aim to make use of unlabeled data. Random (feature) subspace (RAS) methods aim to use different feature subspaces to train different classifiers and combine them in an ensemble. In this thesis, we obtain informative and diverse feature subspaces for classifier ensembles by means of randomly drawing relevant feature subspaces. We then use these ensembles for supervised and semi-supervised learning. Our first algorithm produces relevant random subspaces using the mutual information based relevance values. This method is used in Rel-RAS (supervised) and Rel-RASCO (semi-supervised) algorithms. The second algorithm modifies the mRMR (Minimum Redundancy Maximum Relevance) feature selection algorithm to produce random feature subsets that are both relevant and non-redundant. This method is used in mRMR-RAS (supervised) and mRMR-RASCO (semi-supervised) algorithms. We perform experimental analysis of our methods on a number of datasets and compare them to existing methods. We also do theoretical analysis of classifier ensembles produced by our methods using Kohavi Wolpert (KW) variance, information theory based low order diversity (LOD) and information theoretic scores (ITS). We find out that LOD has a similar tendency with KW-variance and ensemble accuracy of the algorithms can be explained using ITS.DoktoraPh

    Probabilistic models for multi-view semi-supervised learning and coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 146-160).This thesis investigates the problem of classification from multiple noisy sensors or modalities. Examples include speech and gesture interfaces and multi-camera distributed sensor networks. Reliable recognition in such settings hinges upon the ability to learn accurate classification models in the face of limited supervision and to cope with the relatively large amount of potentially redundant information transmitted by each sensor or modality (i.e., view). We investigate and develop novel multi view learning algorithms capable of learning from semi-supervised noisy sensor data, for automatically adapting to new users and working conditions, and for performing distributed feature selection on bandwidth limited sensor networks. We propose probabilistic models built upon multi-view Gaussian Processes (GPs) for solving this class of problems, and demonstrate our approaches for solving audio-visual speech and gesture, and multi-view object classification problems. Multi-modal tasks are good candidates for multi-view learning, since each modality provides a potentially redundant view to the learning algorithm. On audio-visual speech unit classification, and user agreement recognition using spoken utterances and head gestures, we demonstrate that multi-modal co-training can be used to learn from only a few labeled examples in one or both of the audio-visual modalities. We also propose a co-adaptation algorithm, which adapts existing audio-visual classifiers to a particular user or noise condition by leveraging the redundancy in the unlabeled data. Existing methods typically assume constant per-channel noise models.(cont.) In contrast we develop co-training algorithms that are able to learn from noisy sensor data corrupted by complex per-sample noise processes, e.g., occlusion common to multi sensor classification problems. We propose a probabilistic heteroscedastic approach to co-training that simultaneously discovers the amount of noise on a per-sample basis, while solving the classification task. This results in accurate performance in the presence of occlusion or other complex noise processes. We also investigate an extension of this idea for supervised multi-view learning where we develop a Bayesian multiple kernel learning algorithm that can learn a local weighting over each view of the input space. We additionally consider the problem of distributed object recognition or indexing from multiple cameras, where the computational power available at each camera sensor is limited and communication between cameras is prohibitively expensive. In this scenario, it is desirable to avoid sending redundant visual features from multiple views. Traditional supervised feature selection approaches are inapplicable as the class label is unknown at each camera. In this thesis, we propose an unsupervised multi-view feature selection algorithm based on a distributed coding approach. With our method, a Gaussian Process model of the joint view statistics is used at the receiver to obtain a joint encoding of the views without directly sharing information across encoders. We demonstrate our approach on recognition and indexing tasks with multi-view image databases and show that our method compares favorably to an independent encoding of the features from each camera.by C. Mario Christoudias.Ph.D
    corecore