16,445 research outputs found

    Multi-View Clustering via Semi-non-negative Tensor Factorization

    Full text link
    Multi-view clustering (MVC) based on non-negative matrix factorization (NMF) and its variants have received a huge amount of attention in recent years due to their advantages in clustering interpretability. However, existing NMF-based multi-view clustering methods perform NMF on each view data respectively and ignore the impact of between-view. Thus, they can't well exploit the within-view spatial structure and between-view complementary information. To resolve this issue, we present semi-non-negative tensor factorization (Semi-NTF) and develop a novel multi-view clustering based on Semi-NTF with one-side orthogonal constraint. Our model directly performs Semi-NTF on the 3rd-order tensor which is composed of anchor graphs of views. Thus, our model directly considers the between-view relationship. Moreover, we use the tensor Schatten p-norm regularization as a rank approximation of the 3rd-order tensor which characterizes the cluster structure of multi-view data and exploits the between-view complementary information. In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point. Extensive experiments on various benchmark datasets indicate that our proposed method is able to achieve satisfactory clustering performance

    Orthogonal Laurent polynomials in unit circle, extended CMV ordering and 2D Toda type integrable hierarchies

    Get PDF
    Orthogonal Laurent polynomials in the unit circle and the theory of Toda-like integrable systems are connected using the Gauss--Borel factorization of a Cantero-Moral-Velazquez moment matrix, which is constructed in terms of a complex quasi-definite measure supported in the unit circle. The factorization of the moment matrix leads to orthogonal Laurent polynomials in the unit circle and the corresponding second kind functions. Jacobi operators, 5-term recursion relations and Christoffel-Darboux kernels, projecting to particular spaces of truncated Laurent polynomials, and corresponding Christoffel-Darboux formulae are obtained within this point of view in a completely algebraic way. Cantero-Moral-Velazquez sequence of Laurent monomials is generalized and recursion relations, Christoffel-Darboux kernels, projecting to general spaces of truncated Laurent polynomials and corresponding Christoffel-Darboux formulae are found in this extended context. Continuous deformations of the moment matrix are introduced and is shown how they induce a time dependant orthogonality problem related to a Toda-type integrable system, which is connected with the well known Toeplitz lattice. Using the classical integrability theory tools the Lax and Zakharov-Shabat equations are obtained. The dynamical system associated with the coefficients of the orthogonal Laurent polynomials is explicitly derived and compared with the classical Toeplitz lattice dynamical system for the Verblunsky coefficients of Szeg\H{o} polynomials for a positive measure. Discrete flows are introduced and related to Darboux transformations. Finally, the representation of the orthogonal Laurent polynomials (and its second kind functions), using the formalism of Miwa shifts, in terms of τ\tau-functions is presented and bilinear equations are derived
    corecore