82,912 research outputs found

    The Patterson-Sullivan embedding and minimal volume entropy for outer space

    Full text link
    Motivated by Bonahon's result for hyperbolic surfaces, we construct an analogue of the Patterson-Sullivan-Bowen-Margulis map from the Culler-Vogtmann outer space CV(Fk)CV(F_k) into the space of projectivized geodesic currents on a free group. We prove that this map is a topological embedding. We also prove that for every k2k\ge 2 the minimum of the volume entropy of the universal covers of finite connected volume-one metric graphs with fundamental group of rank kk and without degree-one vertices is equal to (3k3)log2(3k-3)\log 2 and that this minimum is realized by trivalent graphs with all edges of equal lengths, and only by such graphs.Comment: An updated versio

    Strings from Feynman Graph counting : without large N

    Full text link
    A well-known connection between n strings winding around a circle and permutations of n objects plays a fundamental role in the string theory of large N two dimensional Yang Mills theory and elsewhere in topological and physical string theories. Basic questions in the enumeration of Feynman graphs can be expressed elegantly in terms of permutation groups. We show that these permutation techniques for Feynman graph enumeration, along with the Burnside counting lemma, lead to equalities between counting problems of Feynman graphs in scalar field theories and Quantum Electrodynamics with the counting of amplitudes in a string theory with torus or cylinder target space. This string theory arises in the large N expansion of two dimensional Yang Mills and is closely related to lattice gauge theory with S_n gauge group. We collect and extend results on generating functions for Feynman graph counting, which connect directly with the string picture. We propose that the connection between string combinatorics and permutations has implications for QFT-string dualities, beyond the framework of large N gauge theory.Comment: 55 pages + 10 pages Appendices, 23 figures ; version 2 - typos correcte

    Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Full text link
    This paper contains the first written exposition of some ideas (announced in a previous survey) on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.Comment: Special Issue "Noncommutative Spaces and Fields

    A geometric approach to (semi)-groups defined by automata via dual transducers

    Full text link
    We give a geometric approach to groups defined by automata via the notion of enriched dual of an inverse transducer. Using this geometric correspondence we first provide some finiteness results, then we consider groups generated by the dual of Cayley type of machines. Lastly, we address the problem of the study of the action of these groups in the boundary. We show that examples of groups having essentially free actions without critical points lie in the class of groups defined by the transducers whose enriched dual generate a torsion-free semigroup. Finally, we provide necessary and sufficient conditions to have finite Schreier graphs on the boundary yielding to the decidability of the algorithmic problem of checking the existence of Schreier graphs on the boundary whose cardinalities are upper bounded by some fixed integer
    corecore