37,769 research outputs found

    Semi-Distributed Demand Response Solutions for Smart Homes

    Get PDF
    The Internet of Things (IoT) paradigm brings an opportunity for advanced Demand Response (DR) solutions. It enables visibility and control on the various appliances that may consume, store or generate energy within a home. It has been shown that a centralized control on the appliances of a set of households leads to efficient DR mechanisms; unfortunately, such solutions raise privacy and scalability issues. In this chapter we propose an approach that deals with these issues. Specifically, we introduce a scalable two-levels control system where a centralized controller allocates power to each house on one side and, each household implements a DR local solution on the other side. A limited feedback to the centralized controller allows to enhance the performance with little impact on privacy. The solution is proposed for the general framework of capacity markets

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi

    Scenarios for the development of smart grids in the UK: synthesis report

    Get PDF
    ‘Smart grid’ is a catch-all term for the smart options that could transform the ways society produces, delivers and consumes energy, and potentially the way we conceive of these services. Delivering energy more intelligently will be fundamental to decarbonising the UK electricity system at least possible cost, while maintaining security and reliability of supply. Smarter energy delivery is expected to allow the integration of more low carbon technologies and to be much more cost effective than traditional methods, as well as contributing to economic growth by opening up new business and innovation opportunities. Innovating new options for energy system management could lead to cost savings of up to £10bn, even if low carbon technologies do not emerge. This saving will be much higher if UK renewable energy targets are achieved. Building on extensive expert feedback and input, this report describes four smart grid scenarios which consider how the UK’s electricity system might develop to 2050. The scenarios outline how political decisions, as well as those made in regulation, finance, technology, consumer and social behaviour, market design or response, might affect the decisions of other actors and limit or allow the availability of future options. The project aims to explore the degree of uncertainty around the current direction of the electricity system and the complex interactions of a whole host of factors that may lead to any one of a wide range of outcomes. Our addition to this discussion will help decision makers to understand the implications of possible actions and better plan for the future, whilst recognising that it may take any one of a number of forms

    Smart homes, control and energy management:How do smart home technologies influence control over energy use and domestic life?

    Get PDF
    By introducing new ways of automatically and remotely controlling domestic environments smart technologies have the potential to significantly improve domestic energy management. It is argued that they will simplify users’ lives by allowing them to delegate aspects of decision-making and control - relating to energy management, security, leisure and entertainment etc. - to automated smart home systems. Whilst such technologically-optimistic visions are seductive to many, less research attention has so far been paid to how users interact with and make use of the advanced control functionality that smart homes provide within already complex everyday lives. What literature there is on domestic technology use and control, shows that control is a complex and contested concept. Far from merely controlling appliances, householders are also concerned about a wide range of broader understandings of control relating, for example, to control over security, independence, hectic schedules and even over other household members such as through parenting or care relationships. This paper draws on new quantitative and qualitative data from 4 homes involved in a smart home field trial that have been equipped with smart home systems that provide advanced control functionality over appliances and space heating. Quantitative data examines how householders have used the systems both to try and improve their energy efficiency but also for purposes such as enhanced security or scheduling appliances to align with lifestyles. Qualitative data (from in-depth interviews) explores how smart technologies have impacted upon, and were impacted by, broader understandings of control within the home. The paper concludes by proposing an analytical framework for future research on control in the smart home

    Integration of Legacy Appliances into Home Energy Management Systems

    Full text link
    The progressive installation of renewable energy sources requires the coordination of energy consuming devices. At consumer level, this coordination can be done by a home energy management system (HEMS). Interoperability issues need to be solved among smart appliances as well as between smart and non-smart, i.e., legacy devices. We expect current standardization efforts to soon provide technologies to design smart appliances in order to cope with the current interoperability issues. Nevertheless, common electrical devices affect energy consumption significantly and therefore deserve consideration within energy management applications. This paper discusses the integration of smart and legacy devices into a generic system architecture and, subsequently, elaborates the requirements and components which are necessary to realize such an architecture including an application of load detection for the identification of running loads and their integration into existing HEM systems. We assess the feasibility of such an approach with a case study based on a measurement campaign on real households. We show how the information of detected appliances can be extracted in order to create device profiles allowing for their integration and management within a HEMS
    • …
    corecore