181 research outputs found

    An Overview on Numerical Analyses of Nematic Liquid Crystal Flows

    Get PDF
    The purpose of this work is to provide an overview of the most recent numerical developments in the field of nematic liquid crystals. The Ericksen-Leslie equations govern the motion of a nematic liquid crystal. This system, in its simplest form, consists of the Navier-Stokes equations coupled with an extra anisotropic stress tensor, which represents the effect of the nematic liquid crystal on the fluid, and a convective harmonic map equation. The sphere constraint must be enforced almost everywhere in order to obtain an energy estimate. Since an almost everywhere satisfaction of this restriction is not appropriate at a numerical level, two alternative approaches have been introduced: a penalty method and a saddle-point method. These approaches are suitable for their numerical approximation by finite elements, since a discrete version of the restriction is enough to prove the desired energy estimate

    Approximation of Smectic-A liquid crystals

    Get PDF
    In this paper, we present energy-stable numerical schemes for a Smectic-A liquid crystal model. This model involve the hydrodynamic velocity-pressure macroscopic variables (u, p) and the microscopic order parameter of Smectic-A liquid crystals, where its molecules have a uniaxial orientational order and a positional order by layers of normal and unitary vector n. We start from the formulation given in [E’97] by using the so-called layer variable φ such that n = ∇φ and the level sets of φ describe the layer structure of the Smectic-A liquid crystal. Then, a strongly non-linear parabolic system is derived coupling velocity and pressure unknowns of the Navier-Stokes equations (u, p) with a fourth order parabolic equation for φ. We will give a reformulation as a mixed second order problem which let us to define some new energy-stable numerical schemes, by using second order finite differences in time and C 0 - finite elements in space. Finally, numerical simulations are presented for 2D-domains, showing the evolution of the system until it reachs an equilibrium configuration. Up to our knowledge, there is not any previous numerical analysis for this type of models.Ministerio de Economía y CompetitividadMinistry of Education, Youth and Sports of the Czech Republi
    • …
    corecore