226,563 research outputs found
Adversarial Dropout for Supervised and Semi-supervised Learning
Recently, the training with adversarial examples, which are generated by
adding a small but worst-case perturbation on input examples, has been proved
to improve generalization performance of neural networks. In contrast to the
individually biased inputs to enhance the generality, this paper introduces
adversarial dropout, which is a minimal set of dropouts that maximize the
divergence between the outputs from the network with the dropouts and the
training supervisions. The identified adversarial dropout are used to
reconfigure the neural network to train, and we demonstrated that training on
the reconfigured sub-network improves the generalization performance of
supervised and semi-supervised learning tasks on MNIST and CIFAR-10. We
analyzed the trained model to reason the performance improvement, and we found
that adversarial dropout increases the sparsity of neural networks more than
the standard dropout does.Comment: submitted to AAAI-1
- …