5 research outputs found

    Semantics-Driven approach for automatic selection of best views of 3D shapes

    No full text
    We introduce a new framework for the automatic selection of the best views of 3D models. The approach is based on the assumption that models belonging to the same class of shapes share the same salient features that discriminate them from the models of other classes. The main issue is learning these features. We propose a datadriven approach where the best view selection problem is formulated as a classification and feature selection problem; First a 3D model is described with a set of view-based descriptors, each one computed from a different viewpoint. Then a classifier is trained, in a supervised manner, on a collection of 3D models belonging to several shape categories. The classifier learns the set of 2D views that maximize the similarity between shapes of the same class and also the views that discriminate shapes of different classes. Our experiments using the LightField (LFD) descriptors and the Princeton Shape Benchmark demonstrate the performance of the approach and its suitability for classification and online visual browsing of 3D data collections

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all

    Descriptor Based Analysis of Digital 3D Shapes

    Get PDF

    Visualization, Adaptation, and Transformation of Procedural Grammars

    Get PDF
    Procedural shape grammars are powerful tools for the automatic generation of highly detailed 3D content from a set of descriptive rules. It is easy to encode variations in stochastic and parametric grammars, and an uncountable number of models can be generated quickly. While shape grammars offer these advantages over manual 3D modeling, they also suffer from certain drawbacks. We present three novel methods that address some of the limitations of shape grammars. First, it is often difficult to grasp the diversity of models defined by a given grammar. We propose a pipeline to automatically generate, cluster, and select a set of representative preview images for a grammar. The system is based on a new view attribute descriptor that measures how suitable an image is in representing a model and that enables the comparison of different models derived from the same grammar. Second, the default distribution of models in a stochastic grammar is often undesirable. We introduce a framework that allows users to design a new probability distribution for a grammar without editing the rules. Gaussian process regression interpolates user preferences from a set of scored models over an entire shape space. A symbol split operation enables the adaptation of the grammar to generate models according to the learned distribution. Third, it is hard to combine elements of two grammars to emerge new designs. We present design transformations and grammar co-derivation to create new designs from existing ones. Algorithms for fine-grained rule merging can generate a large space of design variations and can be used to create animated transformation sequences between different procedural designs. Our contributions to visualize, adapt, and transform grammars makes the procedural modeling methodology more accessible to non-programmers
    corecore