2 research outputs found

    Semantically Enhanced Containers for Concurrent Real-Time Systems

    No full text
    Future space missions, such as Mars Science Laboratory, are built upon computing platforms providing a high degree of autonomy and diverse functionality. The increased sophistication of robotic spacecraft has skyrocketed the complexity and cost of its software development and validation. The engineering of autonomous spacecraft software relies on the availability and application of advanced methods and tools that deliver safe concurrent synchronization as well as enable the validation of domainspecific semantic invariants. The software design and certification methodologies applied at NASA do not reach the level of detail of providing guidelines for the development of reliable concurrent software. To achieve effective and safe concurrent interactions as well as guarantee critical domain-specific properties in code, we introduce the notion of a Semantically Enhanced Container (SEC). A SEC is a data structure engineered to deliver the flexibility and usability of the popular ISO C++ Standard Template Library containers, while at the same time it is hand-crafted to guarantee domain-specific policies. We demonstrate the SEC proof-of-concept by presenting a shared nonblocking SEC vector. To eliminate the hazards of the ABA problem (a fundamental problem in lock-free programming), we introduce an innovative library for querying C++ semantic information. Our SEC design aims at providing an effective model for shared data access within the JPL’s Mission Data System. Our test results show that the SEC vector delivers significant performance gains (a factor of 3 or more) in contrast to the application of nonblocking synchronization amended with the traditional ABA avoidance scheme.

    Programming Language Evolution and Source Code Rejuvenation

    Get PDF
    Programmers rely on programming idioms, design patterns, and workaround techniques to express fundamental design not directly supported by the language. Evolving languages often address frequently encountered problems by adding language and library support to subsequent releases. By using new features, programmers can express their intent more directly. As new concerns, such as parallelism or security, arise, early idioms and language facilities can become serious liabilities. Modern code sometimes bene fits from optimization techniques not feasible for code that uses less expressive constructs. Manual source code migration is expensive, time-consuming, and prone to errors. This dissertation discusses the introduction of new language features and libraries, exemplifi ed by open-methods and a non-blocking growable array library. We describe the relationship of open-methods to various alternative implementation techniques. The benefi ts of open-methods materialize in simpler code, better performance, and similar memory footprint when compared to using alternative implementation techniques. Based on these findings, we develop the notion of source code rejuvenation, the automated migration of legacy code. Source code rejuvenation leverages enhanced program language and library facilities by finding and replacing coding patterns that can be expressed through higher-level software abstractions. Raising the level of abstraction improves code quality by lowering software entropy. In conjunction with extensions to programming languages, source code rejuvenation o ers an evolutionary trajectory towards more reliable, more secure, and better performing code. We describe the tools that allow us efficient implementations of code rejuvenations. The Pivot source-to-source translation infrastructure and its traversal mechanism forms the core of our machinery. In order to free programmers from representation details, we use a light-weight pattern matching generator that turns a C like input language into pattern matching code. The generated code integrates seamlessly with the rest of the analysis framework. We utilize the framework to build analysis systems that find common workaround techniques for designated language extensions of C 0x (e.g., initializer lists). Moreover, we describe a novel system (TACE | template analysis and concept extraction) for the analysis of uninstantiated template code. Our tool automatically extracts requirements from the body of template functions. TACE helps programmers understand the requirements that their code de facto imposes on arguments and compare those de facto requirements to formal and informal specifications
    corecore