
PROGRAMMING LANGUAGE EVOLUTION

AND SOURCE CODE REJUVENATION

A Dissertation

by

PETER MATHIAS PIRKELBAUER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2010

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4281545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PROGRAMMING LANGUAGE EVOLUTION

AND SOURCE CODE REJUVENATION

A Dissertation

by

PETER MATHIAS PIRKELBAUER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Bjarne Stroustrup
Committee Members, Gabriel Dos Reis

Lawrence Rauchwerger
Jaakko Järvi
Weiping Shi

Head of Department, Valerie Taylor

December 2010

Major Subject: Computer Science

iii

ABSTRACT

Programming Language Evolution

and Source Code Rejuvenation.

(December 2010)

Peter Mathias Pirkelbauer, Dipl.-Ing., Johannes-Kepler Universität Linz, Austria;

M.B.A., Texas A&M University

Chair of Advisory Committee: Dr. Bjarne Stroustrup

Programmers rely on programming idioms, design patterns, and workaround

techniques to express fundamental design not directly supported by the language.

Evolving languages often address frequently encountered problems by adding language

and library support to subsequent releases. By using new features, programmers can

express their intent more directly. As new concerns, such as parallelism or security,

arise, early idioms and language facilities can become serious liabilities. Modern code

sometimes benefits from optimization techniques not feasible for code that uses less

expressive constructs. Manual source code migration is expensive, time-consuming,

and prone to errors.

This dissertation discusses the introduction of new language features and li-

braries, exemplified by open-methods and a non-blocking growable array library. We

describe the relationship of open-methods to various alternative implementation tech-

niques. The benefits of open-methods materialize in simpler code, better performance,

and similar memory footprint when compared to using alternative implementation

techniques.

Based on these findings, we develop the notion of source code rejuvenation, the

automated migration of legacy code. Source code rejuvenation leverages enhanced

program language and library facilities by finding and replacing coding patterns that

iv

can be expressed through higher-level software abstractions. Raising the level of

abstraction improves code quality by lowering software entropy. In conjunction with

extensions to programming languages, source code rejuvenation offers an evolutionary

trajectory towards more reliable, more secure, and better performing code.

We describe the tools that allow us efficient implementations of code rejuvena-

tions. The Pivot source-to-source translation infrastructure and its traversal mecha-

nism forms the core of our machinery. In order to free programmers from representa-

tion details, we use a light-weight pattern matching generator that turns a C++ like

input language into pattern matching code. The generated code integrates seamlessly

with the rest of the analysis framework.

We utilize the framework to build analysis systems that find common workaround

techniques for designated language extensions of C++0x (e.g., initializer lists). More-

over, we describe a novel system (TACE — template analysis and concept extraction)

for the analysis of uninstantiated template code. Our tool automatically extracts

requirements from the body of template functions. TACE helps programmers under-

stand the requirements that their code de facto imposes on arguments and compare

those de facto requirements to formal and informal specifications.

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I.A. What Is Source Code Rejuvenation? 2

I.A.1. Applications . 3

I.B. Case Study . 4

I.B.1. Initializer Lists . 4

I.C. Statement of Contribution 6

II LITERATURE REVIEW . 9

II.A. Tool Support . 9

II.B. Software Analysis . 12

II.C. Rejuvenation . 18

II.D. Refactoring . 21

II.D.1. Source Code Rejuvenation Versus Refactoring . . . 23

II.E. Multiple-Dispatch Extensions 24

III TOOL SUPPORT . 28

III.A. Pivot . 29

III.A.1. Internal Program Representation 30

III.A.1.a. Implementation 31

III.A.2. eXternal Program Representation 35

III.B. Support Libraries . 36

III.B.1. Compile-Time Meta Information 37

III.B.2. A Generic Visitor 42

III.B.3. Traversal Library 43

III.B.4. Equality Comparison 46

III.B.5. Implementation 47

III.C. A Lightweight Pattern Matching Tool 48

III.C.1. Motivation . 49

III.C.2. Input Language 50

III.C.2.a. Simple Patterns 51

III.C.2.b. Pattern Variables 53

III.C.2.c. Matching Sequences 55

III.C.2.d. Pattern Calls 57

vi

CHAPTER Page

III.C.2.e. Pattern Arguments 58

III.C.2.f. Matching Order 60

III.C.2.g. Ambiguity Checking and Resolution 60

III.C.3. Output . 62

III.C.3.a. Tree Matching 63

III.C.3.b. String Matching 64

III.C.3.c. Runtime Engine 65

III.C.3.d. Comparison 65

III.C.4. Future Work . 66

IV THE OPEN-METHODS LANGUAGE EXTENSIONS 68

IV.A. Introduction . 68

IV.B. Application Domains . 70

IV.B.1. Shape Intersection 71

IV.B.2. Data Format Conversion 71

IV.B.3. Type Conversions in Scripting Languages 73

IV.B.4. Compiler Pass over an AST 73

IV.B.5. Binary Method Problem 74

IV.B.6. Algorithm Selection Using Dynamic Properties

of Objects . 75

IV.B.7. Action Systems 77

IV.B.8. Extending Classes with Operations 78

IV.B.9. Open-Methods Programming 79

IV.C. Definition of Open Methods 81

IV.C.1. Type Checking and Call Resolution of Open-Methods 83

IV.C.2. Overload Resolution 84

IV.C.3. Ambiguity Resolution 85

IV.C.3.a. Single Inheritance 86

IV.C.3.b. Repeated Inheritance 86

IV.C.3.c. Virtual Inheritance 88

IV.C.4. Covariant Return Types 89

IV.C.5. Algorithm for Dispatch Table Generation 91

IV.C.6. Alternative Dispatch Semantics 94

IV.D. Discussion of Design Decisions 96

IV.D.1. Late Ambiguities 97

IV.D.2. Consistency of Covariant Return Types 103

IV.D.3. Pure Open-Methods 105

IV.E. Relation to Orthogonal Features 105

vii

CHAPTER Page

IV.E.1. Namespace . 105

IV.E.2. Access Privileges 107

IV.E.3. Smart Pointers . 107

IV.F. Implementation . 108

IV.F.1. Changes to Compiler and Linker 108

IV.F.2. Changes to the Object Model 109

IV.F.3. Alternative Approaches 112

IV.F.3.a. Multi-Methods 112

IV.F.3.b. Chinese Remainders 113

V COMPARISON WITH WORKAROUND TECHNIQUES 120

V.A. Background on Runtime Concepts 120

V.A.1. Introduction . 121

V.A.2. Generic Programming 123

V.A.2.a. Standard Template Library 125

V.A.3. Runtime Concepts for STL Iterators 126

V.A.3.a. Concept Layer 127

V.A.3.b. Model Layer 128

V.A.3.c. Wrapper Layer 130

V.A.4. The Algorithms Library 131

V.A.4.a. Design Goals 132

V.A.5. Implementation in ISO C++ 133

V.A.6. Implementation in C++ with Open Multi-Methods 140

V.A.7. Tests . 144

V.A.7.a. Algorithm Performance 145

V.A.7.b. Library Function Selection 147

V.A.8. Related Work . 149

V.B. Comparison of Programming Styles 150

V.B.1. Image Format Conversion 150

V.B.2. AST Traversal . 154

V.C. Comparison with Other Implementation Techniques . . . 158

V.C.1. Implementations 159

V.C.2. Results and Interpretation 160

VI RECOVERY OF HIGHER LEVEL LANGUAGE ABSTRAC-

TIONS . 163

VI.A. Semantics and Workaround Definition 163

VI.A.1. Semantic Equality 164

viii

CHAPTER Page

VI.B. Workaround Recognition 166

VI.B.1. Patterns of Initializer List Construction 166

VI.B.2. The State Machine 169

VI.C. Results . 170

VI.C.1. Tests . 170

VI.C.2. Discussion . 171

VII REJUVENATION OF LIBRARY USE 172

VII.A. Introduction . 172

VII.A.1. Non-Blocking Synchronization 173

VII.A.2. Non-Blocking Data Structures 174

VII.A.3. A Non-Blocking Vector 174

VII.B. Implementation . 175

VII.B.1. Implementation 176

VII.B.1.a. The ABA Problem 178

VII.C. Performance Evaluation 181

VII.D. Future Work . 185

VIII TEMPLATE ANALYSIS AND CONCEPT EXTRACTION . . . 186

VIII.A.Introduction . 186

VIII.B.Concepts for C++ . 190

VIII.C.Requirements Extraction 194

VIII.C.1. Evaluation of Expressions 194

VIII.C.2. Evaluation of Declarations and Statements 198

VIII.C.3. Evaluation of Class Instantiations 199

VIII.C.4. Examples . 200

VIII.D.From Requirements to Concepts 202

VIII.D.1. Function Calls . 202

VIII.D.2. Result Type Reduction 203

VIII.E.Concept Matching with Repository 205

VIII.E.1. Concept Kernel 206

VIII.E.2. Concept Matching 207

VIII.E.3. Families of Functions 210

VIII.F.Results . 212

VIII.G.Related Work . 213

VIII.H.Future Work . 214

VIII.H.1. Concept Utilization Analysis 214

VIII.H.2. Automatic Lifting of Non-Template Code 218

ix

CHAPTER Page

IX CONCLUSION AND FUTURE WORK 219

REFERENCES . 221

APPENDIX A . 247

VITA . 254

x

LIST OF TABLES

TABLE Page

I Source code rejuvenation vs. refactoring 23

II Support libraries overview . 47

III Pattern matching strategies . 66

IV Dispatch table with repeated base classes 87

V Dispatch table with virtual base class 89

VI Resolution with covariance . 90

VII Call resolution in D1 and D2 . 103

VIII D1 and D2 loaded together . 104

IX Dispatch table with repeated base classes 116

X Reference test (vector<int>) . 145

XI Test concrete iterators (sequence<T>) 146

XII Test fallback functions (sequence<T>) 146

XIII Dispatch performance - cold cache 148

XIV Dispatch performance - hot cache . 149

XV Experimental results . 160

XVI Vector - operations . 176

XVII Evaluation rules for expressions . 196

XVIII Evaluation rules for declarations and statements 198

XIX Preliminary results on concept use 217

xi

LIST OF FIGURES

FIGURE Page

1 Rejuvenation tool architecture . 28

2 IPR class hierarchy . 32

3 Comparison tag hierarchy . 39

4 Arity tag hierarchy . 41

5 Alternatives in a pattern trie . 63

6 Pattern tree . 64

7 Pattern tree — string traversal . 65

8 Image format hierarchy . 72

9 Objects and actions . 77

10 C++ inheritance models . 85

11 Object model for repeated inheritance 110

12 Object model for virtual inheritance 111

13 Layers of the runtime concept idiom 131

14 Statemachine recognizes initializer list workaround 169

15 Lock-free vector, T denotes a data structure parameterized on T. . . 175

16 Performance results - Intel Core Duo 183

17 Performance results - alternative memory management 184

18 Performance results - AMD 8-way Opteron 184

19 The TACE tool chain . 189

xii

FIGURE Page

20 Requirement extraction . 200

xiii

LIST OF ALGORITHMS

ALGORITHM Page

1 Dispatch Table Generation . 118

2 find dominated(a, most specific) . 119

3 Dispatching with Chinese Remainders 119

4 lf::vector — PushBack vector, elem 178

5 lf::vector — AllocBucket vector, bucket 178

6 lf::vector — Size vector . 179

7 lf::vector — Read vector, i . 179

8 lf::vector — Write vector, i, elem . 179

9 lf::vector — PopBack vector . 179

10 lf::vector — Reserve vector, size . 180

11 lf::vector — At vector, i . 180

12 lf::vector — CompleteWrite vector, writeop 180

1

CHAPTER I

INTRODUCTION

Popular programming languages evolve over time. One driver of evolution is a de-

sire to simplify the use of these languages in real life projects. For example, in the

early 1970s the C programming language was developed as a system programming

language for the UNIX operating system on the PDP-11 [152]. With the proliferation

of UNIX to other platforms, C evolved to reflect concerns, such as portability and

type safety. Later Stroustrup enhanced C with higher level abstractions to simplify

the development of a distributed and modularized UNIX kernel [170]. Compared to

C, ISO C++ [97] directly supports the program design with classes, dynamic dispatch,

templates, exception handling, and more [170]. Abstraction mechanisms present in

C++ can be compiled to efficient machine code on many architectures. This makes

C++ suitable for software development of embedded systems, desktop computers,

and mainframe architectures. C++’s proliferation and success is a constant source

of ideas for enhancements and extensions. The ISO C++ standards committee has

released a draft of the next revision of the C++ standard, commonly referred to as

C++0x [173, 27]. C++0x will address a number of modeling problems (e.g., object

initialization) by providing better language and library support. Until compiler and

library implementations of C++0x become widely available, C++ programmers solve

these problems through programming idioms and workaround techniques. These “so-

lutions” are typically more involved than they would be in C++0x and can easily

become another source of errors and maintenance problems.

This dissertation follows the style of Science of Computer Programming.

2

This dissertation draws its examples from C++0x’s proposed extensions (as of

May 2009) to the language and its standardized libraries [25], but the topic is equally

valid for other widely used and evolving languages, such as Python [186], C# [68],

and Java [14]. For example, Java is currently undergoing its sixth major revision since

its first release in 1995. Extensions under consideration for Java 7 include support for

closures, null-safe method invocations, extended catch clauses to catch and rethrow

groups of exceptions, type inference for generics and others [127].

I.A. What Is Source Code Rejuvenation?

Source code rejuvenation is a source-to-source transformation that replaces depre-

cated language features and idioms with modern code. Old code typically contains

outdated idioms, elaborate and often complex coding patterns, deprecated language

features (or data structures). The rejuvenated code is more concise, safer, and uses

higher level abstractions. What we call outdated idioms (and patterns) are techniques

often developed in response to the lack of direct language support. When program-

ming languages and techniques evolve, these coding styles become legacy code, as

programmers will express new code in terms of new language features. This leads to

a mix of coding styles, which complicates a programmer’s understanding of source

code and can cause maintenance problems. Furthermore, teaching and learning can

be greatly simplified by eliminating outdated language features and idioms.

Source code rejuvenation is a unidirectional process that detects coding tech-

niques expressed in terms of lower-level language and converts them into code using

higher-level abstractions. High-level abstractions make information explicit to pro-

grammers and compilers that would otherwise remain buried in more involved code.

We aim to automate many forms of code rejuvenation and to provide program as-

3

sistance for cases where human intervention is necessary. In other words, our aim is

nothing less than to reverse (some forms of) (software) entropy!

Preserving behavioral equivalence between code transformations is necessary to

claim correctness. In the context of source code rejuvenation, a strict interpretation

of behavior preservation would disallow meaningful transformations (e.g., see the ini-

tializer list example §I.B.1). We therefore argue that a valid source code rejuvenation

preserves or improves a program’s behavior. In addition, when a rejuvenation tool

detects a potential problem but does not have sufficient information to guarantee a

correct code transformation, it can point the programmer to potential trouble spots

and suggest rejuvenation. For example, a tool can propose the use of the C++0x’s

array class instead of C style arrays. A C++0x array object passed as a function argu-

ment does not decay to a pointer. The argument retains its size information, which

allows a rejuvenation tool to suggest bounds checking of data accesses in functions

that take arrays as parameters.

I.A.1. Applications

Source code rejuvenation is an enabling technology and tool support for source code

rejuvenation leverages the new languages capabilities in several aspects:

Source Code Migration: Upgrading to the next iteration of a language can inval-

idate existing code. For example, a language can choose to improve static type safety

by tightening the type checking rules. As a result, formerly valid code produces pesty

error or warning messages. An example is Java’s introduction of generics. Starting

with Java 5 the compiler warns about the unparametrized use of Java’s container

classes.

Even with source code remaining valid, automated source code migration makes

the transition to new language versions smoother. For example, programmers would

4

not need to understand and maintain source files that use various workaround tech-

niques instead of (later added) language constructs. For example, a project might use

template based libraries (e.g., Standard Template Library (STL) [15], STAPL [13])

where some were developed for C++03 and others for C++0x. In such a situation,

programmers are required to understand both.

Education: Integration with a smart IDE enables “live” suggestions that can

replace workarounds/idioms with new language constructs, thereby educating pro-

grammers on how to better use available language and library constructs.

Optimization: The detection of workarounds and idioms can contribute a sig-

nificant factor to both the development cost of a compiler and the runtime, as the

detection and transformation requires time. Compiler vendors are often reluctant to

add optimizations for every possible scenario. The introduction of new language con-

structs can enable more and better optimizations (e.g., const expr lets the compiler

evaluate expressions at compile time [27]). Automated source code migration that

performs a one-time source code transformation to utilize the new language support

enables optimizations that might be forgone otherwise.

I.B. Case Study

In this section, we demonstrate source code rejuvenation with examples taken from

C++0x, namely initializer lists and concept extraction.

I.B.1. Initializer Lists

In current C++, the initialization of a container (or any other object) with an arbitrary

number of different values is cumbersome. When needed, programmers deal with the

problem by employing different initialization idioms.

5

Consider initializing a vector of int with three constant elements (e.g., 1, 2, 3).

Techniques to achieve this include writing three consecutive push back operations,

and copying constants from an array of int. We can “initialize” through a series of

push back()s:

// using namespace std;
vector<int> vec;

// three consecutive push backs
vec.push back(1);
vec.push back(2);
vec.push back(3);

Alternatively, we can initialize an array and use that to initialize the vector:

// copying from an array
int a[] = {1, 2, 3};
vector<int> vec(a,a+sizeof(a)/sizeof(int));

These are just the two simplest examples of such workarounds observed in real

code. Although the described initialization techniques look trivial, it is easy to acci-

dentally write erroneous or non-optimal code. For example, in the first example the

vector resizes its internal data structure whenever the allocated memory capacity

is insufficient to store a new value; in some situations that may be a performance

problem. The second example is simply a technique that people often get wrong

(e.g. by using the wrong array type or by specifying the wrong size for the vector).

Other workarounds tend to be longer, more complicated, and more-error prone. Re-

juvenating the code to use C++0x’s initializer list construction [3][120] automatically

remedies this problem.

// rejuvenated source code in C++0x
vector<int> vec = {1, 2, 3};

In C++0x, the list of values (1, 2, 3) becomes an initializer list. Initializer list con-

structors take a list of values as argument and construct an initial object state. As

a result, the rejuvenated source code is more concise. It needs only one line of code

6

(LOC), when compared to two and four LOCs needed by the workaround techniques.

The rejuvenated source code is more uniform: every workaround is replaced by the

same construct. In this particular case, we gain the additional effect that the re-

juvenated code code style is analogous to C style array initialization (compare the

definition of the array a in the code snippet with the workaround examples).

I.C. Statement of Contribution

The goal of my research is to support the development of real-world applications.

This support can be provided by many means and includes improvements to pro-

gramming languages, provision of specialized libraries, enhancements of programming

techniques, experiments with analysis and design techniques, and implementation of

development and analysis tools.

The ubiquitous multi-core architectures offer performance benefits to concurrent

applications. The development of concurrent software is tedious and involves many

challenges that are not present in single-threaded code. The use of non-blocking data

structures avoids some of these problems. We — Damian Dechev, Bjarne Stroustrup,

and I — have developed a non-blocking implementation of a resizable array (similar

to STL vector) (§VII.A.3, [57]). The design, implementation, and test development is

joint work together with Damian Dechev. Our initial implementation requires users

to follow certain coding guidelines in order to avoid ABA problems [57]. Bjarne

Stroustrup suggested that these guidelines can easily be followed when the program

code can be partitioned into phases (e.g., production phase and consumption phase

of a vector’s elements).

Our subsequent work emphasizes the notion of phases to guarantee the safe use

of the non-blocking array. Together with Damian Dechev, I worked out a checking

7

mechanism to statically extract array operations from a program phase. The use

of the array is safe, if the phase only contains an ABA safe mix of operations. An

approach of this idea was implemented by Damian Dechev [56].

Yuriy Solodkyy, Bjarne Stroustrup, and I have extended the C++ programming

language with support for open-methods (Chapter IV, [145, 146, 147]). Open-methods

provide runtime dispatch where the dispatch decision is based on the dynamic type

of one or more arguments. Moreover, open-methods separate the definition of classes

from the declaration of virtual functions. Under my lead, Yuriy Solodkyy and I

(and in an earlier stage together with Nan Zhang) defined the dispatch semantics

and extended the Itanium object model. This object model was initially developed

for the Itanium architecture. It is used by C++ compilers on various architectures.

Yuriy Solodkyy suggested the incorporation of return type information into the am-

biguity resolution mechanism. Bjarne Stroustrup suggested an ambiguity resolution

policy for programs with dynamically linked libraries. I extended the EDG C++

frontend, code lowering, and built-in functions (such as dynamic cast) to compile

open-methods (and other code) according to the modified object model. Together

with Yuriy Solodkyy, I implemented the prototype linker.

The design and implementation of open-methods reflects our view, that this

language feature is located at the intersection of object-oriented programming (OOP)

and generic programming (GP). Subsequently, open-methods proved to be a natural

complement of runtime concepts, a programming model developed by Sean Parent

and Mat Marcus at Adobe Systems [136, 114]. During an internship at Adobe, I

extended their implementation with a mechanism (implemented in ISO C++) that

allows for open dispatch, reminiscent to open-methods (§V.A.5, [143]). By replacing

the dispatch mechanism with an implementation based on C++ with open-methods,

I simplified the design and improved dispatch performance (§V.A.6, [144]).

8

My work on library design, programming languages and techniques prompted

the pertinent question: how can legacy code benefit from current developments?

Consequently, my recent work emphasizes on source code rejuvenation [142] — the

detection of “older”, lower level code that can be (automatically) replaced with more

“modern”, higher level abstractions, such as new language features and libraries.

Based on the Pivot, a source-to-source translation framework designed by Dos Reis

and Stroustrup, I developed source code rejuvenations tools. TACE, a tool to analyze

C++ generic functions, helps programmers understand the requirements their code

imposes on template arguments (Chapter VIII). Another tool extends the Pivot with

pattern matching. Pattern matching proved useful for the recovery of simple coding

patterns from C++ source code. For example, I have applied this tool to recover

C++0x’s initializer lists (Chapter VI).

9

CHAPTER II

LITERATURE REVIEW

In this section, we present prior work in areas that are related to the topic of this

dissertation. This includes work on software rejuvenation, re-engineering of high level

design abstractions from source code, tools that ease the implementation of source

code analysis, and work that relates to the open multi-methods language extension.

The literature review is organized as follows: tool support, corpus analysis of software,

rejuvenation projects, refactoring, and projects relating to multiple dispatch.

II.A. Tool Support

Source to source translations frameworks have recently received great interest in both

research and industry. We present alternative tools that are used to analyze C and

C++ source code and tools that help programmers write queries and transforma-

tions against source code. In contrast to most tools presented in this section, the

Pivot §III.A (the infrastructure we used for this dissertation) uses industrial strength

compiler frontends to handle the complete ISO C++ standard and exposes all semantic

details to the analysis writer.

Rose [149, 148, 194] is a compiler framework developed by Dan Quinlan’s group

at the Lawrence Livermore National Laboratory. It provides a source-to-source trans-

lation framework for C++ and Fortran programs. Rose’s framework offers complete

type and control flow information to application programmers. Rose emphasizes the

re-generation of code close to its original form. The differences between Rose’s C++

representation and the Pivot are subtle. A conversion between the two representa-

tions is effortlessly possible. Rose has been applied for a number of domains, such as

bug finding (see §II.B), communication trace extraction [148], style guide checking,

10

analysis and transformations of generic programs [194], and others.

Elsa [118, 117] is Scott McPeak’s C/C++ parser and intermediate program rep-

resentation. Elsa is generated by the Elkhound parser generator from a GLR gram-

mar [86]. The internal tree representation is generated by an abstract tree grammar

generator. Elsa is able to parse most of GCC 3.4’s header files, except for files that

rely on template template parameters (e.g., valarray) [117]. Oink enhances Elsa by

offering a dataflow framework to analysis writers. OINK is used for finding uses of

untrusted data [46]. The Mozilla development team and various research groups at

UC Berkeley use OINK for source-to-source translations of C++ code.

The Design Maintenance System (DMS) [23, 24] is a commercial analysis and

transformation system which supports multiple input languages. Analysis and trans-

formations tasks are implemented using parallel attribute grammars or in the special

purpose language Parlanse. Parlanse supports fine grain parallelism and exhibits

characteristics of functional and procedural languages. According to Semantic De-

sign, DMS is very stable and used to evolve multiple large scale projects, to detect

clones in source code [24], to reengineer C++ components, to implement test coverage

and profiling tools.

Stratego/XT [36] is a system that aims for providing modular and reusable traver-

sal strategies and rewrite rules. At Stratego’s core is an integrated functional language

and a non-linear pattern matcher. Stratego distinguishes between concrete syntax

(source language) and abstract syntax (term representation of the AST). Patterns

can be defined in both concrete and abstract syntax. Stratego uses GLR frontends to

parse a number of input languages. Due to the lack of type information, the current

C++ frontend (Transformers) is not able to resolve all ambiguities currectly. Strat-

ego/XT has been the transformation engine for diverse projects, including program

optimizations through domain specific transformations (e.g., CodeBoost [17, 16]),

11

software renovation projects (e.g., COBOL [154]), software configuration, compila-

tion through transformation projects (e.g., The Dryad Java compiler [104]), etc.

Columbus/Can [19, 70] is FrontEndART’s commercial C++ analysis framework

for source code quality assurance and reverse engineering. Columbus/Can extracts

schema representations from C++ source files. The tool is available for Windows and

has been applied for several empirical studies in the domains of software metrics, fact

extraction (see §II.B), and design pattern recognition in C++ code (see §II.B).

srcML [113, 50] is Maletic et al’s tool that adds an XML like structure on top

of source code. A major goal of srcML is to provide a representation that is easier

to work with than a regular abstract syntax tree, and that retains all syntactic in-

formation that is present in source code, including comments, whitespace characters,

and macros. As an XML based tool, srcML offers both a document representation,

preserving the original formatting of code, and a data representation, exposing many

details that are typically present in an AST. Since srcML stops at a specific level

of semantic analysis, it is able to represent incomplete and erroneous source code.

srcML has been used for program comprehension, recovering class associations and

relationships for representation in UML [180], analysis of template code [181], etc.

TXL [52, 53] is language that was specifically developed to facilitate language

experiments and transformations. TXL’s logic is built around rules, first order func-

tions, and a term rewrite mechanism. TXL tightly integrates traversal, non-linear

pattern specification, and term rewriting mechanism. TXL is grammar based, users

can extend base grammars with customized rules. Its LL parser handles ambiguities

by interpreting alternatives rules in source order and backtracking in case a grammar

rule cannot be successfully parsed. Among grammars for other languages, a C++95

grammar is available for download. TXL has been successfully applied in diverse

domains — from the transformation of legacy code to avoid Y2K problems in a large

12

scale project to the recognition of hand-written mathematical formulas.

Metal [45] is a language to write static analysis for C programs. Metal’s grammar

is a superset of C and its programs are called checkers/extensions. Programmers

specify patterns for which they can use typed ”hole” variables. Hole variables can

match any source constructs that are valid in the context. Metal extends the type

systems with metal types (e.g.: any expr, any scalar, any arguments, . . .). Metal

patterns are defined together with a state machine. A matching pattern can trigger

a state transition and execute a specified operation. Metal checkers use a depth first

traversal of the control flow graph and terminate when all paths have been traversed

and a fixed point in the analysis is reached. Among others, Metal has been applied

to find imbalances of disabled interrupts and potential null pointer accesses.

Tom [20] extends numerous programming languages (e.g., C/C++, C#, Java,

etc.) with a pattern matching and rewrite mechanism for tree structures. Patterns

can be defined for built-in types, such as strings, and for user defined structures.

Strategies, such as top-down, innermost first, define the order in which rules are

applied. With Gom, the Java distribution provides an abstract syntax definition that

generates tree structures. TOM has been applied for defining XML queries, source

code transformations, and the implementation of rule based systems.

II.B. Software Analysis

Corpus analysis of software has been applied to numerous domains, including opti-

mizations, fact extraction, software design recovery, bug finding, and others. The

studied projects have in common that they (statically) recover higher level abstrac-

tions or defective conditions from source code. Similar techniques can be applied for

re-engineering of language features from workaround techniques.

13

Algorithm recognition and replacement is Metzger and Wen’s approach [121] to-

wards automated, architecture specific program optimization. Their approach matches

computational kernels against algorithms specified in a repository. By replacing de-

tected algorithms with calls to software libraries, legacy code can benefit from, for

example, highly optimized library implementations (e.g., exploiting parallelism). A

major concern of their work is implementation variability. They address this problem

by converting programs into an internal canonical form. This process normalizes the

represented program by lowering control structures (e.g., loops, conditions), applying

compiler optimization techniques (e.g., common subexpression elimination, unreach-

able code elimination, various loop transformations, constant propagation, etc.), and

ordering expression trees (to deal with commutative operators). Algorithm recogni-

tion applies pattern matching to compare the canonical representation against the

stored instances in the repository. The semantics of nested loops is verified by apply-

ing a constraint solver on extracted induction variable constraints. Metzger and Wen

used their system to optimize scientific codes on high performance machines.

Design pattern recognition are an integral part of assisted software documentation

and code comprehension frameworks. Moreover, Agerbo and Cornils [5] have argued

for language extensions that support programming with well known design patterns.

Ferenc et al [70] classify patterns according to the addressed concern. Creational

patterns deal with object creation, structural patterns address composition of classes

(e.g., inheritance hierarchies), and behavioral patterns describe the interaction of

objects. The authors use Columbus/Can to mine design patterns from C++ open

source projects (StarOffice Calc, StarOffice Writer, Jikes, and Leda). They report

recognizing more than 1200 design patterns in about 3 million lines of code (involving

about 14000 classes).

Shi and Olsson [158] present PINOT, a static analysis tool that discovers all

14

GoF [79] design patterns in the structural and behavior driven category (e.g., visitor,

singleton, and flyweight pattern) from Java source code. PINOT uses structural

information, such as declarations, associations, and delegations, to limit the search

space to likely candidates. PINOT uses limited control flow and data flow analysis to

detect pattern invariants and abstract from concrete implementations. PINOT was

tested on various industrial frameworks and applications, including Java AWT 1.3,

JHotDraw 6.0, Java Swing 1.4, Apache ANT 1.6.

If a design pattern is expressible as language feature, gathering empirical data

can be useful for language designers. Muschevici et al [131] studied programs that

utilize dynamic dispatch. The article introduces a language independent model for

describing multiple dispatch, and defines six metrics on generic functions (i.e. in

C++ an open-method family or a virtual function and its overriders) that measure

aspects, such as the number of arguments used for dynamic dispatch, the number of

overriders in a multi-method family, etc. Using these metrics, the article analyzes nine

applications—mostly compilers—written in six different languages: CLOS, Dylan,

Cecil, MultiJava, Diesel [43], and Nice [32]. Their results show that 13%-32% of

generic functions utilize the dynamic type of a single argument, while 2.7%-6.5% of

them utilize the dynamic type of multiple arguments. The remaining 65%-93% generic

functions have a single concrete method, and therefore are not considered to use the

dynamic types of their arguments. In addition, the study reports that 2%-20% of

generic functions had two and 3%-6% had three concrete function implementations.

The numbers decreases rapidly for functions with more concrete overriders. Since the

multiple dispatch semantics presented in this dissertation is in line with the model

defined by Muschevici et al, we expect similar results for C++ with open-methods.

Micro patterns in Java code [81] describes the finding of low level implementation

techniques in source code. In contrast to design patterns, micro patterns have a

15

formal definition and can be automatically recognized. Examples for micro patterns

include restricted inheritance, emulation of the procedural and functional paradigm

in an object-oriented language, or data encapsulation. The goal of this work is the

definition of a micro pattern catalog indicative of good coding practices. The paper

gives a catalog of 27 patterns. The corpus analysis of 70000 Java classes reveals that

a large portion of code (75%) can be described by micro patterns. The authors argue

that the maturity of micropatterns makes them candidates for future programming

language extensions.

Bug pattern recognition: Hovemeyer and Pugh [92] use simple (formal) methods

to discover recurring bugs in code. Their system FindBugs checks Java code for 17

bug patterns (e.g, null pointer dereferences, superfluous null pointer checking, tacitly

swallowing exceptions, double checked locking, etc.). They classify their analysis

according to the methods applied. The applied methods include querying structural

information (i.e., class hierarchies), linear code scan driving a state machine, control

flow, and data flow. FindBugs aims at finding potential bugs with a false positive rate

less than 50%. They tested their tool against several programs used in production

code. On the tested software the tool reports between 1 and 3 bugs per thousand

lines of code.

Quinlan et al [150] model bug patterns recognizable by structural and control

flow data. In their studies, they compare bug pattern specifications based on binary

decision diagrams (BDD) [99] and Datalog [39] with implementations written directly

against Rose’s AST. The Datalog implementation requires storing the intermediate

program representation into a relational database. Then they employ BDDBDDB [107] as

query solver. The authors implemented the following bug pattern analysis: switch

statements without default branch, static member construction (posing portabil-

ity hazards), and null pointer dereferences. Their research reports implementations

16

against the AST to feel more “natural”, while the declarative nature of Datalog cuts

the length of implementation significantly. Conversely, the paper reports that direct

approach shows good runtime performance, while the execution time of the Datalog

approach is not yet well understood.

Martin et al’s program query language (PQL) [115] uses a mix of static analysis

and instrumentation to find bug conditions in software. Queries define patterns in a

source code like style. Patterns can be combined using various operators, including

operators for sequences, partial sequences, alternatives, and others. A static analyzer

reports code that violates patterns. For cases where the static analyzer cannot de-

termine a definitive result, the code is instrumented to perform the analysis at run

time. The static analysis engine offers sophisticated points-to information. The im-

plementation of the static analyzer uses BDDBDDB and Datalog. The authors utilized

PQL to detect bug patterns, such as the violation of dynamic type constraints, se-

curity flaws allowing SQL injection attacks, call sequences violating required order

of invocations, and lapsed listeners (leading to memory leaks). The authors tested

their approach against six industrial projects (i.e., Eclipse, webgoat, personalblog,

road2hibernate, snipsnap, and roller) and found more than 200 formerly unreported

errors (the majority in Eclipse).

Bessey et al [29] describe the experience of turning an academic project into a

commercial bug finding tool (Coverity). The paper provides anecdotal evidence of the

challenges a static analysis tool faces when applied in industrial settings. A practical

tool needs to be able to handle about 1400 LOCS per minute in order to enable nightly

checks against larger code sizes. The acceptance of such a tool depends on its ability

to correctly recognize important bugs and at the same time report only a limited

number of false positives. Technical, organizational, and individual reasons cause

additional challenges in the real world. Technical problems are posed by the plethora

17

of systems, build processes, language dialects, and use of dated tools. Organizational

problems are related to intellectual property issues (code causing problems cannot

be shared with the tool developer) and misaligned incentive structures (rewards are

based on bug counts, hampering the introduction of new tool versions that could

identify more bugs; rewards are given for successful builds or meeting milestones on

time, but not for correct code). Individual reasons deal with tool acceptance by

programmers that do not understand the bug reports. Such programmers are more

likely to misclassify a reported problem that is based on complex analysis as false

positive.

Thompson and Brat [184] utilize a mixed set of tools for software analysis. Their

tools include a static analyzer, symbolic execution engine, and a model checker. Each

tool in their tool chain is built on top of the LLVM compiler framework [110]. LLVM

generates low-level (e.g., templates are instantiated, inheritance hierarchies are flat-

tened, overloaded function calls are resolved, etc.), but typed intermediary code for

its own virtual machine. By integrating multiple approaches, Thompson and Brat

combine the advantages of each approach. Their toolchain uses static analysis to

indicate regions that the model checker will need to check, thereby reducing the ef-

fective state space (partial order reduction). In addition, the model checker provides

more specific results for alias analysis, which can be fed back to the static analysis

tool. Failure conditions that the model checker can find are modeled as assertions.

The symbolic computation engine drives the generation of interesting test cases, that

can be fed into the static analyzer and the model checker. Preliminary tests with

NASA’s On-board Abort Execution (OAE) indicate that the framework is able to

handle real-world flight code.

Venet [188] discusses abstract interpretation as a technique for static analysis

and formal verification. The key element in Venet’s work is the decomposition of

18

analysis into modular entities. For each module, the interface and the environment

are formally defined. The author uses a domain specific language to model interaction

between modules and their environment. This model together with the module code

is fed into a static analyzer. The framework was applied to check a dynamic buffer

module, which is an integral part of all OpenSSH components, against buffer overflow

problems. The test verified that all pointer indirections within the buffer module are

safe.

Loop classification [78] uses XQuery [40] to recognize monotone loops in Java

software. A monotone loop is defined as a loop where the iteration variable is guar-

anteed to progress towards the limit of the termination condition in every iteration of

the loop. Loops where the analyzer cannot guarantee the monotonicity criterion are

reported for human inspection (or forwarded to more sophisticated analysis tools).

With relatively simple formal methods, the authors show that in practical applications

about 80% of loops terminate.

II.C. Rejuvenation

The MoDisco project [67] is part of the Eclipse framework. MoDisco aims at providing

a framework that extracts information from existing programs, synthesizes this infor-

mation, and derives upgrade information. MoDisco is a model driven framework that

relies on meta-models of existing software, discoverers that can create these models

from systems, and tool support that help understand and transform complex models.

Generifying Java is described by Von Dincklage and Diwan [60]. They present a

tool Ilwith, a system for the Java programming language that identifies classes that

could be rewritten to take advantage of Java Generics (introduced in Java 1.5). Ilwith

is based on jimple, the Soot’s optimization framework’s [185] high level program rep-

19

resentation. Ilwith operates in two phases, first identifying parametrizable classes and

their type constraints, and second converting the identified classes and their clients.

The tool uses a number of heuristics in order not to “overgenerify” (as compared to

human code maintenance). Ilwith was tested against data structures from the Java

1.4 and Antlr [139] class libraries. The authors report their tool effectively handles

the tested libraries, but classes that incorrectly use weak typing.

Extracting Concepts from C++ template functions has been studied by Sutton

and Maletic [181]. Their work describes matching requirements against a set of

predefined concepts. The approach is based on formal concept analysis and finds

combinations of multiple concepts, if needed, to cover the concept requirements of a

template functions. In order to avoid complications from “the reality of C++ program-

ming” [181], the authors validate their approach with a number of hand implemented

STL algorithms, for which they obtain results that closely match the C++ standard

specification. The authors discuss how small changes in the implementation can lead

to small variations in their identified concepts.

Leveraging paradigm shifts in legacy code requires automated source code reju-

venation tools. Siff [162, 164, 163] discusses source code renovation techniques in the

context of migrating source code from C to C++. Techniques to recover object-oriented

polymorphism include analysis of casts and structural subtyping relationships in C

programs. The author tested the approach against several projects (i.e., bash, binu-

tils, gcc, ijpeg, perl vortex, xemacs, phone). The work reports the number of total

casts, pointer casts, upcasts, downcasts, and mismatched casts (neither up or down,

for example, from void*). For bash, which had 76 000 LOC, the authors reports

309 type pair-specific casts, of which were 65 type pair-specific pointer casts. The

pointer casts were composed of 50 up- and four downcasts, and eleven mismatches.

Another renovation discusses the conversion of regular C functions into C++ tem-

20

plate functions. Siff starts by replacing type annotations of variable and parameter

declarations with free type variables. Then, he applies type inference methods and

predefined functional constraints to solve type relationships among type variables. In

order to not over generalize, the author applies heuristics to find types that will not be

templatized. The reported results indicate that for the tested code about half of the

concrete types can be replaced by template arguments. Finally, Siff also discusses the

problem of modularizing source code. His work utilizes concept analysis [106]; func-

tions are modeled as objects, and the author describes analysis with various attribute

models (e.g., a function uses a specific field of a struct, a function has a parameter

of a specific type). The dissertation presents an algorithm that finds possible con-

cept partitions. The tool depends on user input to limit solutions to partitions with

specific properties (e.g., granularity).

Harsu [88] presents cross language (from PL/M to C++) code modernizations.

She discusses finding abstractions of object oriented code in a lower level language.

The key element is programming idioms that mimic language features for modeling

subclass relationships and object oriented polymorphism. In the course of migrat-

ing the code to C++ these idioms are recovered and replaced by an object-oriented

implementation. The author provides a tool that can identify code in procedural

languages that can better be modeled using object oriented concepts. For example,

the tool identifies selection statements that can be replaced by virtual functions. She

tested the approach against real world code from the telecommunication sector and

found six procedures (out of eleven) where late binding improves software design.

Harsu also addresses some problems emerging from conditional compilation.

Replacing the C preprocessor: McCloskey and Brewer [116] analyze the practi-

cal use of the C preprocessor. They discern important use cases and use cases that

are error prone. Consequently, the authors define ASTEC, a replacement for the C

21

preprocessor, supporting the important use cases. ASTEC is simpler to analyze, in

particular for source to source transformation software. The authors also offer an

automated translation tool (Macroscope) that derives its information from expanded

macro in a concrete AST of the primary source language (e.g., C, C++). For complex

and irregular preprocessor macros, Macroscope allows programmers to specify hints.

Macroscope generates warnings for translations that are considered imprecise (poten-

tially due to an error in the original macro specification). The authors tested their

tools against four stable open source products (i.e., gzip 1.2.4, rcs 5.7, OpenSSH 3.9p1,

Linux 2.6.10). The tests did not reveal any errors in the tested code base.

II.D. Refactoring

The term refactoring is derived from the mathematical term “factoring” and refers

to finding multiple occurrences of similar code and factoring it into a single reusable

function, thereby simplifying code comprehension and future maintenance tasks [119].

The meaning of refactoring has evolved and broadened. Opdyke and Johnson [134]

define refactoring as an automatic and behavior preserving code transformations that

improves source code that was subject to gradual structural deterioration over its

life-time. Essentially, refactorings improve the design of existing code [73, 105].

Traditionally, refactoring techniques have been applied in the context of object-

oriented software development. Automated refactoring simplifies modifications of a

class, a class hierarchy, or several interacting classes [134]. More recently, refactoring

techniques have been developed to support programs written in other programming

styles (i.e., functional programming [108]).

Refactorings capture maintenance tasks that occur repeatedly. Opdyke [133]

studied recurring design changes (e.g., component extraction and class (interface)

22

unification). Refactoring is a computer assisted process that guarantees correctness,

thereby enabling programmers to maintain and develop software more efficiently.

In particular, evolutionary (or agile) software development methodologies [2], where

rewriting and restructuring source code frequently is an inherent part of the develop-

ment process of feature extensions, benefit from refactoring tools.

“Anti-patterns” [37] and “code smells” [73] are indicators of design deficiencies.

Anti-patterns are initially structured solutions that turn out to be more troublesome

than anticipated. Examples for anti-patterns include the use of exception-handling for

normal control-flow transfer, ignoring exceptions and errors, magic strings, and classes

that require their client-interaction to occur in a particular sequence. Source code that

is considered structurally inadequate is said to suffer from code smell. Examples for

“code smell” include repeated similar code, long and confusing functions (or methods),

overuse of type tests and type casts. The detection of code smell can be partially

automated [138] and it assists programmers in finding potentially troublesome source

locations. Refactoring of anti-patterns and “code smells” to more structured solutions

improves safety and maintainability.

Refactoring does not emphasize a particular goal or direction of source code mod-

ification — e.g., refactoring supports class generalization and class specification [133],

refactoring can reorganize source code towards patterns and away from patterns (in

case a pattern is unsuitable) [105].

Refactoring strictly preserves the observable behavior of the program. The term

“observable behavior”, however, is not well defined [119]. What observable behavior

exactly requires (e.g., function call trace, performance, . . .) remains unclear. Refac-

toring does not eliminate bugs, but can make bugs easier to spot and fix.

23

II.D.1. Source Code Rejuvenation Versus Refactoring

Table I summarizes characteristics of source code rejuvenation and refactoring. Both

are examples of source code analysis and transformations that operate on the source

level of applications. Refactoring is concerned to support software development with

tools that simplify routine tasks, while source code rejuvenation is concerned with a

one-time software migration. Both are examples of source code analysis and transfor-

mation. Source code rejuvenation gathers information that might be dispersed in the

source of involved workaround techniques and makes the information explicit to com-

pilers and programmers. Refactoring emphasizes the preservation of behavior, while

source code rejuvenation allows for and encourages behavior improving modifications.

Table I. Source code rejuvenation vs. refactoring

Code Rejuvenation Refactoring

Transformation Source-to-source Source-to-source

Behavior improving preserving

Directed
Raises the level

No
of abstraction

Drivers
Language and Feature extensions

library evolution Design changes

Indicators
Workaround idioms Code smells

and techniques Anti-patterns

Applications
One-time source Recurring

code migration maintenance tasks

We might consider code rejuvenation a “subspecies” of refactoring (or vise versa),

24

but that would miss an important point. The driving motivation or code rejuvenation

is language and library evolution rather than the gradual improvement of design

within a program. Once a rejuvenation tool has been configured, it can be applied

to a wide range of programs with no other similarities than that they were written in

an earlier language dialect or style.

We are aware that refactoring has been used to describe semantic preserving code

transformations that migrate code to use new frameworks (e.g., Tip et al. [18], Tansey

and Tilevich [182], and others). The difference between language evolution related

code transformations and refactoring is subtle but important. We prefer and suggest

the term “source code rejuvenation” for describing one-time and directed source code

transformations that discover and eliminate outdated workaround techniques, idioms,

and uses of old libraries. The key benefit of source code rejuvenation is that it raises

the level of abstraction in source code. Subsequently, more (higher-level) information

is available to code maintainers, static analysis tools, and compilers.

II.E. Multiple-Dispatch Extensions

Programming languages can support multi-methods either through built-in facilities,

pre-processors, or library extensions. Tighter language integration enjoys a much

broader design space for type checking, ambiguity handling, and optimizations com-

pared to libraries. In this section, we will first review both library and non-library

approaches for C++ and then give a brief overview of multi-methods in other lan-

guages.

Preprocessor based implementations: A preprocessor reads some source code and

transforms it into source code that can be read by the next stage in the build process.

A general disadvantage of providing language extensions through preprocessors is that

25

the build process becomes fractured and hard to analyze. The preprocessor transforms

specific parts of a program, but has typically incomplete semantic information of the

source. Likewise, the resulting code lacks the high level abstraction. In the long run,

preprocessor solutions tend to become hard to maintain.

Cmm [166] is a preprocessor based implementation for an open-method C++

extension. Cmm takes a translation unit and generates C++ dispatch code from it. It

is available in two versions. One uses RTTI to recover the dynamic type of objects

to identify the best overrider. The other achieves constant time dispatch by relying

on a virtual function overridden in each class. Dispatch ambiguities are signaled by

throwing runtime exceptions. Cmm allows dynamically linked libraries to register and

unregister their open-methods at load and unload time. In addition to open-method

dispatch, Cmm also provides call-site virtual dispatch. Call site virtual dispatch

delays the binding to regular overloaded functions, if one of their actual arguments

is preceded by the virtual keyword.

void foo(A&);
void foo(B&); // B derives from A

// call site virtual dispatch
foo(virtual x); // which foo gets invoked depends on the dynamic type of x

Cmm does not provide special support for repeated inheritance, and therefore

its dispatch technique does not entirely conform to virtual function semantics.

DoubleCpp [30] is another preprocessor based approach for multi-methods dis-

patching on two virtual parameters. It essentially translates these multi-methods

into the visitor pattern. For doing so, DoubleCpp requires access to the files contain-

ing the class definitions in order to add the appropriate accept and visit methods.

DoubleCpp, unlike other visitor-based approaches, reports potential ambiguities.

Libraries can provide provide multi-method abstractions when the host language

lacks direct language support (e.g, Loki [9] for C++, or Python [186]). In general, li-

26

braries providing multi-methods, such as Loki, or the runtime concept library §V.A,

lack semantic information of the class hierarchy that is available to compilers. Conse-

quently, users have to provide this information in form of type lists, intrusive modeling

techniques, or initialization to the library implementation. This extra effort makes

libraries prone to programming errors. The lack of semantic information can also

result in less than optimal performance §V.A.7.

Loki [9], based on Alexandrescu’s template programming library with the same

name, provides several different dispatchers that balance between speed, flexibility,

and code verbosity. Currently, it supports multi-methods with two arguments only,

except for the constant-time dispatcher that allows more arguments. The static dis-

patcher provides call resolution based on overload resolution rules, but requires man-

ual linearization of the class hierarchy in order to uncover the most derived type of an

object first. All other dispatchers do not consider hierarchical relations and effectively

require explicit resolution of all possible cases.

Related language extension: Accessory functions [71, 195] allow open-method

dispatch based on a single virtual argument and discuss ideas to extend the mechanism

for multiple dispatch. The compilation model they describe uses, like our approach, a

compiler and linker cooperation to perform ambiguity resolution and dispatch-table

generation. However, the accessory functions are integrated into the regular v-tables

of their receiver types, which requires the linker to not only generate the dispatch

table but also to recompute and resolve the v-table index of any other virtual member

function. Neither paper provides a detailed discussion of the intricacies when multiple

inheritance is involved. The authors do not refer to a model implementation to which

we could compare our approach.

OOLANG [135] is a language developed for the Apemille SPMD supercomputer.

OOLANG features a C++ like object model and supports open-methods. The work

27

gives special attention to the handling of covariant return types. OOLANG’s system

differs from our implementation in the handling of repeated inheritance. Classes that

repeatedly inherit from a baseclass must define an overrider for each open-method

that uses the baseclass as the type for a virtual parameter. Furthermore OOLANG

does not use covariant return type information for ambiguity resolution.

Alternative implementation technique: In §IV.F, we present a dispatch table

based implementation of multi-methods. Chambers and Chen [44] generalize multiple

dispatch towards predicate-based dispatch. Their paper presents a lookup DAG based

implementation of multiple dispatch. Their approach trades off smaller binary size

for somewhat less efficient dispatch.

28

CHAPTER III

TOOL SUPPORT

It is crucial for the acceptance of source code rejuvenation software that the results

are accurate and can be produced in a timely manner. Consequently, such software

requires a source-to-source transformation framework that is general, can represent

the complete source language, and can handle real-world code. In addition, the

development of rejuvenation tools should allow programmers to write their analysis

with an effort that is proportional to the analysis task. The graph in Fig. 1 sketches

the architecture of our rejuvenation tool chain.

Fig. 1. Rejuvenation tool architecture

Our tool chain is based on the Pivot [177, 64], a compiler-independent platform

for static analysis and semantics-based transformation of the complete ISO C++ pro-

gramming language and some advanced language features included in C++0x. The

Pivot generates an in-memory representation from C++ source files. The rejuvena-

tion analysis traverses this intermediate representation and searches for interesting

29

patterns. These patterns are defined in a C++ like language. A generator converts

these definitions into C++ code that performs the matching. The rejuvenation logic

determines whether the combination of recognized patterns indicate some workaround

code. The analysis prints out a rejuvenation (or rewrite) report. In order to migrate

the code automatically the report can be fed into a rewrite system. It is desirable

to generalize the rejuvenation logic to recognize also code that resembles workaround

patterns, but where the semantic equality cannot be guaranteed (e.g., if some code

uses virtual function calls). Such cases require human inspection before the code can

be rewritten.

The Pivot framework offers the following components. §III.A describes the core

component which consists of the compiler frontend, the internal representation (IPR)

and the external representation (XPR). The support libraries (§III.B) help program-

mers with common tasks that are not directly expressible with the core component.

This includes the provision of meta-information, a class that allows writing template

code against the IPR nodes, support to traverse the abstract syntax tree (AST), and

a library that compares nodes for equality. §III.C describes a tool, that generates

query code based on a pattern specification.

Using the framework reduces the amount of code programmers write by hand.

For example, the traversal library factors 600 lines of common code; in our initializer

list recovery project (see Chapter VI), the use of the pattern matcher reduces the size

of code by a factor of 10.

III.A. Pivot

The Pivot, designed by Dos Reis and Stroustrup, is a static analysis and transfor-

mation framework for C++ software. It is designed for generality and emphasizes the

30

retention of original source code. The Pivot preserves high-level abstractions that

are present in source code, such as class hierarchies, type information, and template

code.

The Pivot utilizes industrial strength compiler frontends (i.e., EDG and GCC) to

parse C++ source code. The source code is converted into IPR. IPR makes semantic

relations that are implicitly part of source codes (e.g., names) explicit. For example,

code can have multiple entries with the same name (e.g, variables functions, classes,

etc.). IPR resolves these ambiguities and generates separate objects for different

source code entities. These IPR objects contain information, such as type and scope

data, which simplifies the writing of source code analysis. The provision of semantic

data distinguishes industrial-strength frontend based tools from simpler parser and

text based tools.

In §II.A, we have presented some alternative tools but only few of them can

handle the full ISO C++ standard, offer information on the same level of detail,

or provide an easy to use intermediate representation. The Pivot also features an

external program representation that can be used for language experiments or as

persistent storage format in between two analysis runs.

III.A.1. Internal Program Representation

IPR represents C++ programs at a high-level that preserves many details present in

source code. IPR is not a special purpose representation but rather aims at generality,

completeness, and simplicity. The information retained in IPR is suitable for a wide

variety of use cases.

IPR uses an object-oriented class hierarchy for representing C++ source code. It

can represent a superset of C++, including some programs using language features

of the next revision of the ISO standard. It is extensible and currently supports a

31

number of C++0x’s language extensions (e.g., decltype, for range loops, . . .). IPR

is a fully typed intermediate representation of C++ source code. It represents unin-

stantiated, specialized, and instantiated templates. Calls to overloaded functions (in

non-template and instantiated code) are resolved in IPR. The level of these details

makes the development of industrial-strength tools difficult [29]. Hence, the Pivot

relies on industrial strength C++ frontends (i.e., EDG’s C++ frontend [69], GCC [76]).

IPR’s preservation of high level information (e.g., comments, uninstantiated tem-

plates, . . .) enables analysis of template based libraries, for example, the deduction of

concepts from templates or the rejuvenation and regeneration of source code. IPR’s

representation eliminates C++’s syntactic irregularities. For example, there is only one

kind of object initialization (as opposed to using constructor or assignment syntax

in a declaration) and the receiver argument of a member function call becomes part

of the regular argument list. IPR does not require the source code to be error free.

It can represent non-compilable programs as long as the source code is syntactically

correct.

We stress that the IPR is fully typed. Type information is necessary for the

implementation of source code rejuvenations that are type sensitive. Interesting re-

juvenation analyses and transformations depend on type information. For example,

concept extraction (Chapter VIII) distinguishes operations that are template argu-

ment dependent from operations that are not. Likewise, the implementation to mi-

grate source code to use initializer lists (Chapter VI) is limited to container types

that support initializer-list constructors (i.e., STL containers).

III.A.1.a. Implementation

The design of IPR’s class hierarchy cleanly separates non-modifiable interface classes

from implementation classes. Since this dissertation treats corpus analysis of software,

32

this section focuses on presenting the AST interface. Each node type is part of one

out of six categories: declarations (derived from Decl), statements (Stmt), expres-

sions (Expr), names (Name), types (Type), and other information, such as Linkage,

Annotations, Comments (Node). In total, IPR has about 160 interface classes. (With

“interface class” we mean a type that is recoverable with IPR’s visitor.) Fig. 2 gives

an overview of IPR’s class hierarchy. The various categories are drawn with different

shades.

Fig. 2. IPR class hierarchy

The design and implementation of IPR uses template classes extensively. For

example, any class with a single major subtree is derived from the template class

Unary.

template<class Cat, class Operand = Expr&>
struct Unary : Cat
{
typedef Operand Arg type;
virtual Operand& operand() = 0;
};

The two template arguments describe the category of the node (the template

argument Cat) and the node type of the indirection Operand. The category describes

33

the group to which a node class belongs. The category is a base class that factors

common data access functions. The operand defines the type of the child. Examples

for node-types that derive from Unary include all unary operators (e.g., the com-

plement operator ~, the negation operator !, . . .) referring to Expr, comments and

identifiers referring to String, expression statements referring to Stmt, and others.

The following code shows two classes, Comment and Not, that derive from the unary

template, and one class Classic, which is a base class of Not.

// class subsuming expression operators
struct Classic : Expr {
virtual bool has impl decl() const = 0;
virtual const ipr::Decl& impl decl() const = 0;
// . . .
};
// class, representing the ! − operation
struct Not : Unary<Category<not cat, Classic> > {};
// class representing comments in code
struct Comment : Unary<Category<comment cat, Node>, const String&>
{

Arg type text() const { return operand(); }
};

The class Not inherits from Unary. Unary inherits from its first template argu-

ment (i.e., Category<not cat, Classic>). In turn, the Category class derives from

its second template argument — in this case Classic. Classic subsumes all expres-

sion operators and contains functions to test whether an expression resolves to a user

implemented function. Unary’s operand defaults to const Expr&.

The class Comment inherits from the template class Unary, which in turn derives

from the Category class for comments. The latter derives from IPR’s root class Node.

Unary’s, and subsequently Comment’s operand is a const String&.

Similar to Unary, IPR offers templates for binary, ternary, and quaternary classes.

The template from which a specific interface class derives is a design choice that

reflects the number of major subtrees. This means that cast operations, which take

34

a Type and an Expr, inherit from Binary and not from Unary — from an evaluation

point of view casts could be viewed as unary operators, because casts evaluate a single

sub expression and convert the result to a specified type.

Unification: Representing large-scale industrial-size software projects in memory

can be challenging. IPR addresses scalability by using a unified representation (i.e.,

the same object) for semantically equal data. This reduces the amount of memory

needed. Experiments with GCC demonstrate that unification of type nodes save

about 60% of memory usage for named types, 17% for pointers, and about 10% for

cv-qualified types [64]. Which IPR nodes are unified is a design choice that can be

easily altered. Currently, type and name classes use node unification.

Unification matters for the implementation of an efficient equality comparison.

For unified nodes, pointer equality is sufficient, while non-unified nodes require re-

cursive subtree comparison.

Querying the AST: The built-in querying mechanism for information retrieval

from an AST relies on the visitor design pattern [79]. A detailed comparison of the

visitor pattern to open-methods in the context of AST queries is provided in §V.B.2.

Higher level techniques utilize the provided visitor as the base mechanism. We have

experimented with a template library [51] that query implementations. The library

instantiates visitors (using is<...>). AST objects can be queried by using functors

whose name correspond to a class’s member functions (e.g., name, type). For sequence

traversal the library offers has<>. The following code snippet shows a simple example

that queries whether a node represents a variable or field (data member) called “i”.

is<ipr::Var, ipr::Field>
(name(is<ipr::Identifier>(stringobj == ”i”)), /∗ for Var ∗/
name(is<ipr::Identifier>(stringobj == ”i”)) /∗ for Field ∗/

)(node);

For each indirection, programmers specify the edge to the child node (i.e., name,

35

stringobj) and which type to expect (i.e., is<> functions). The code snippet above

queries, whether a node is a variable (is<ipr::Var>) whose name (name) points to

an identifier (is<ipr::Identifier>) with the value “i” (stringobj == "i").

Luke Wagner [192] builds an iterator based traversal and query framework on top

of the visitor pattern. In addition, his framework uses a lower level, semantic-oriented

representation that abstracts from the syntactic source code level of IPR.

III.A.2. eXternal Program Representation

XPR is a persistent and human readable (and also writable) representation. Since

XPR preserves the information present in IPR, XPR can be considered as the external

twin of IPR. XPR is suitable for storing temporary results between runs of different

analyses.

The file size of an XPR file is in the same order of magnitude as the original

source file.

The grammar of XPR is similar to C++. Some grammar rules are modified to

simplify ambiguity resolution at parse time of code. Specifically, XPR uses a different

syntax for declarations, types, and templates instantiations. The following snippet

demonstrates the syntax modifications with a small example.

// in C++
template <class T>
class vector {

T∗ p;
const static int sz = 0;
};
// in XPR
vector : <T: class> class {

p : ∗T;
sz : const static int = 0;
}

The essential differences are that declarations start with a name (i.e., vector, p,

36

sz) which is followed by a type (e.g., <T: class> class, *T) and optionally by an

initializer (e.g., the body of the class, or the value 0). Types are consistently spelled

from left to right (e.g., *T).

XPR is based on an LALR(1) grammar, which accelerates parsing compared to

parsing C++ source files. The Pivot offers Flex and Bison files, that generate an XPR

lexer and parser. Users can utilize these tools for their own needs, for example to

experiment with new language constructs. In this dissertation, we use an extension

of the XPR as the input format for a pattern match generator (§III.C).

III.B. Support Libraries

This section presents libraries that factor common code, such as traversing of the

AST, handling groups of nodes, recovering type information, and comparing nodes

for equality.

To traverse the internal program representation, the Pivot provides the visitor

pattern [79] as a standardized interface. In ISO C++, the essential value of the visitor

pattern is the recovery of a node’s dynamic type information without resorting to

(cascaded) type tests that rely on runtime type information (RTTI).

In order to simplify writing traversal and query code for IPR, we factor common

tasks into a reusable framework. One goal of this framework is to enable program-

mers to write generic AST queries. By generic, we mean that programmers can write

template functions that handle groups of nodes. The presented framework offers func-

tionality to select specific groups, such as all unary expressions, all cast expressions,

etc. In contrast to object oriented polymorphism, template code preserves (recovered)

type information.

Applications: We will utilize the presented techniques to develop a library of

37

common AST traversal functions §III.B.3. Programmers use these libraries to traverse

the AST, for example to embed the code that is produced by the pattern match

generator (§III.C). In addition, the pattern matching code will rely on some libraries

(i.e., equality generic visitor §III.B.2, comparison §III.B.4).

III.B.1. Compile-Time Meta Information

Querying nodes for compile time information is useful for programmers. It is even

more useful in generic code, that has to account for type specific differences. Consider

code that tests whether two nodes are equal:

// the equality test depends on properties of T
template <class IprNode>
bool equal(const IprNode& lhs, const IprNode& rhs);

The efficient implementation of equal depends on the specific type IprNode. If

the type variable IprNode refers to a leaf class representing a built-in type no further

information is needed — the two nodes are equal. Unified classes can be simply

compared by testing whether the two objects (lhs and rhs) have the same address.

Other nodes require subtree comparison.

The libraries presented in this section supply compile-time information of IPR

types, such as meta data on the inheritance structure, concept membership, node

comparison, and node arity. The meta library defines a compile time function (i.e.,

template class) ct that supports querying of this information. ct is defined over

IPR’s hierarchy.

// namespace ez::meta
template <class IprNode>
struct ct {
. . .
};

Some of this meta data is application specific. Other domains might require

different design or implementation choices. The lack of generality is a reason for not

38

embedding this information directly in the IPR classes. For example, are cast oper-

ations, as discussed in §III.A.1.a, unary or binary? While some applications consider

cast operations as binary (they have an expression and a type), other applications

that are interested in evaluating subexpressions consider casts as unary. Another

question is, when are two Id expr equal? Id expr nodes wrap uses of named expres-

sions (e.g., variables, parameters). Are two Id expr nodes equal if they refer to the

same declaration, or are they equal if the name of the declaration, as written in the

expression, is equal?

Hierarchy: Scenarios exist, in which we would like to forward the handling of a

particular node kind to a base case. ct supports hierarchical forwarding by providing

the base type as typedef (i.e., parent).

// member of ct<T>
typedef /∗ . . . ∗/ parent;

The function base type utilizes this compile time function to erase a single level

of type information in the IPR hierarchy. For example, invoking base type with a

reference to a variable (i.e., an object of type ipr:Var) returns a reference to the same

object but with one level of type information removed (i.e., a reference to ipr::Decl).

// namespace ez::meta
template<class IprNode>
const typename ct<IprNode>::parent&
base type(const IprNode&);

Node forwarding is frequently applied in the code generated by the pattern

matcher. For example, if a unary operation (e.g., Unary plus) matches a pattern,

but its operand does not, the node will be forwarded to code for the base class (e.g.,

Expr).

// n is a UnaryPlus
// match is a boolean indicating whether n’s subexpression is a match
if (!match) this−>handle(ez::meta::base type(n));

39

Equality comparison: IPR addresses scalability issues by unifying some node

categories. Equality comparisons benefit from node unification, because a simple

comparison of two objects’ addresses replaces subtree comparison. Moreover, the

Pivot has separate IPR classes for C++ built-in types. The test whether a given

node represents a built-in type can be implemented by a single type recovery (i.e.,

double dispatch to a visitor). Some declarations, such as functions, variables, user

defined types, etc., can be (multiple times) forward declared. The question arises

what an equality comparison of two different declarations of the same source code

entity should return. The compile-time meta information library cannot presume

to know the answer. The meta class ct provides a member comparison tag that

indicates how two nodes of this type can be compared efficiently.

// member of ct<T>
typedef /∗ . . . ∗/ comparison tag;

Fig. 3 shows the comparison tag hierarchy. Arrows point from the derived to the base

class.

Fig. 3. Comparison tag hierarchy

In addition to the member in ct, the library provides a convenience function comp tag

that returns the same tag type.

// namespace ez::meta
template <class IprNode>
typename ct<IprNode>::comparison tag
ez::meta::comp tag (const IprNode &);

The following code snippet uses the comparison tag for the implementation of an

equality comparison function. We sketch the implementation of equality comparison,

40

which is further discussed in §III.B.4.

template <class IprNode>
bool equals(const IprNode& lhs, const IprNode& rhs, singleton tag)
{
return true;
}
// internal functions that handle different object classes
template <class IprNode>
bool equals(const IprNode& lhs, const IprNode& rhs, unified tag)
{
return &lhs == &rhs;
}
template <class IprNode>
bool equals(const IprNode& lhs, const IprNode& rhs, object tag);

template <class IprNode>
bool equals(const IprNode& lhs, const IprNode& rhs, unified master tag)
{
return &lhs.master() == &rhs.master();
}
// callable function, that invokes a suitable helper function
// equals according to the comparison tag.
template <class IprNode>
bool equals(const IprNode& lhs, const IprNode& rhs)
{
return equals(lhs, rhs, ez::meta::comp tag(lhs));
}

The main function equals uses the comparison tag to choose from four different

implementations (overloaded function equal). The first implements equality for sin-

gleton nodes, such as built in types and global scope. The second implementation

is for unified nodes and requires pointer equality. The third implements equality by

comparing subtrees. — the implementation is not shown. The fourth compares dec-

larations that can have several source code entries (e.g., several function declarations

for the same definition). The comparison checks whether the two declaration point

to the same master declaration.

Arity tags: In IPR, the number of major subtrees a class depends on is visible in

the derivation of the class hierarchy (e.g., unary expressions inherit from the Unary

41

template). Programmers can write generic code against the base templates that IPR

provides by overloading template functions. For example, to write code for all unary

expressions, programmers could provide the following function template:

template <class Cat, class T>
void handle unary(const Unary<Category<Cat, Classic>, T>&);

This style makes generic function declarations verbose. In addition, the type

Unary<...> is a concrete intermediate type but not a fully derived IPR class. Conse-

quently, any functions called from handle unary cannot use fully derived parameter

type names (e.g., Address, Unary minus). To overcome these problems, the pre-

sented library offers arity tags that can be used as an additional parameter for tag

dispatching [1]. Using arity tags, we can append the previous function declaration

with a tag parameter. The unary tag guards the function against being called with

other nodes, such as binary expressions.

template <class IprNode>
void handle unary(const IprNode&, ez::meta:unary tag);

The arity tags defined in the library closely match IPR’s category structure. Their

inheritance graph is shown in Fig. 4.

Fig. 4. Arity tag hierarchy

Programmers can generate the arity tags by using the function ez::meta::tag.

The function is defined over all IPR classes. The following code snippet demonstrates

42

the use of arity tags.

// empty function for non unary nodes
// complements the preceding declaration
void handle unary(const ipr::Expr&, ez::meta::node tag) {}
template <class IprExpr>
void handle unary(const IprExpr& expr)
{

// forward handling to specific implementations
handle unary(expr, ez::meta::tag(expr));
}

III.B.2. A Generic Visitor

This section describes a generic visitor. This class enables templated visit functions

that operate on various node types, while retaining full type information; e.g., a single

implementation for all unary expression nodes.

IPR offers the visitor pattern for traversing the AST node. The visitor pattern

declares a virtual function visit for each interesting AST node type. Programmers

can override these virtual functions with specific logic. IPR’s class hierarchy allows

the processing of groups of nodes, by forwarding a call to the base implementation of a

specific node type (e.g., Address calls the visit for Expr). Forwarding erases concrete

type information and is more general than it should be (e.g., the visitor class has no

visit function for all unary nodes.)

This framework provides a template class (GenericVisitor) that remedies the

loss of type information by recasting node visitation into the generic domain. User

defined visitors derive from the generic visitor using the curiously recurring template

pattern idiom [22]. The next code snippet demonstrates a user defined visitor pattern.

#include ”ez/generic visitor.hpp”

struct IsUnaryExprVisitor : GenericVisitor<IsUnaryExprVisitor>
{

// fallback case, typically cannot be reached
void gvisit(const ipr::Node& n) { assert(false); }

43

// non unary expressions
void gvisit(const ipr::Classic& n) {}
// for all unary operations
template <class Cat, class T>
void gvisit(const Unary<Category<Cat, Classic>, T>&)
{

res = true;
}
IsUnaryExprVisitor() : res(false) {}
bool res;
};

The user defined visitor contains a number of possibly templated gvisit member

functions. The generic visitor chooses the best matching implementation. The visitor

in the example contains a fallback implementation defined on ipr::Node. The mem-

ber function to handle all unary operators uses the notation discussed in the previous

section to discern between unary operations and other IPR nodes. Programmers use

generic visitors like any regular visitor — the base class GenericVistor implements

the Visitor interface.

bool is unary expression(const ipr::Classic& n)
{

IsUnaryExprVisitor vis;

n.accept(vis);
return vis.res;
}

Applications: The pattern match generator (§III.C), the template analysis tool (Chap-

ter VIII), and the traversal framework (§III.B.3) use the generic visitor to query IPR.

III.B.3. Traversal Library

The traversal library factors common traversal code into a reusable component. The

library offers two template classes; one (SourceSequencetraversal) for traversals of

statements and declarations, and another one (ExprVisitor) for left to right traver-

sals of expression trees. The provision of a traversal framework, allows programmers

44

focus on writing analysis logic. Both classes need to be instantiated with a user-

defined client class.

Programmers write their analysis as a client class that gets invoked for every

discovered node. We split the traversal into statement/declaration- and expression

level code. This is useful (and common, such as in the EDG compiler [69]) because

of different concerns (e.g., control flow, evaluation sequence points, . . .).

Statement traversal: The template class SourceSequencetraversal implements

an AST traversal in source sequence order. It is parametrized over a client class.

The traversal mechanism invokes its client for each discovered node. The expected

client interface consists of member functions called pre and post. Each pre and post

function takes a single argument. Both functions are necessary for clients that require

hierarchical analysis contexts (e.g., namespaces, classes, functions, blocks).

Similar to the generic visitor class (§III.B.2) there is no predetermined object-

oriented interface to which a client has to adhere. Users can mix concrete and tem-

plated pre and post functions. For each discovered statement or declaration node

(n), SourceSequencetraversal invokes a client’s pre function. After traversing all

of n’s subtrees, a client’s post function is called. The following code snippet shows an

example client counting the number of declarations and statements in a translation

unit.

struct DeclarationCounter {
DeclarationCounter() : declctr(0), stmtctr(0) {}
void pre(const ipr::Stmt& s) { ++stmtctr; }
void pre(const ipr::Decl& s) { ++declctr; }
void post(const ipr::Stmt& s) {} // handles Stmt and Decl

size t declctr;
size t stmtctr;
};

The following example demonstrates the integration with the traversal class. The

SourceSequencetraversal is instantiated with its client (DeclarationCounter). An

45

object of such type behaves like a visitor.

#include ”ez/travez.hpp”

void analyse(const ipr::Unit& pivot)
{

ez::SourceSequencetraversal<DeclarationCounter> ctr;

pivot.accept(ctr);
. . .
}

Expression traversal: The template class ExprVisitor implements a expression

tree traversal. Like SourceSequencetraversal the ExprVisitor is parametrized

over the client. The expected client interface consists in a member functions called

pre and post. Each pre and post function takes two arguments. The first argument

is a reference to the visited IPR node, the second argument is an arity tag (§III.B.1).

The following code snippet shows an example client, that counts the number of binary

and call nodes in the AST.

struct ExprClient {
ExprClient() : call ctr(0), binaryexpr ctr(0) {}
void pre(const ipr::Node&, ez::meta::node tag) {}
// for all binary operations (except call nodes)
void pre(const ipr::Node&, ez::meta::binary tag) { ++binaryexpr ctr; }
// call nodes
void pre(const ipr::Node&, ez::meta::call tag) { ++call ctr; }
void post(const ipr::Node&, ez::meta::node tag) {}
// subtree traversal
void operator()(const ipr::Expr& ex, ipr::Visitor& vis) { ex.accept(vis); }
size t call ctr;
size t binaryexpr ctr;
};

In addition to the pre and post member functions, the client is also expected to

implement an operator(). The purpose of the operator() is to allow clients more

control over descending the expression tree (i.e., skip over some sub expression trees).

The integration of statement and expression traversal is demonstrated by the

following code example:

46

struct StmtTraversal {
ExprTraversal et; // the traversal client for expr nodes
ez::ExprVisitor<ExprClient> trav;

StmtTraversal() : et(), trav(et) {}
// defined over all ipr::Stmt classes
template <class IprNode>
void pre(const IprNode& node);

void post(const ipr::Node&) {}
. . .
};

The traversal of all children that are expressions is handled by the function

traverse expr which takes an ipr::Stmt and an ipr::Visitor as argument. The

implementation of StmtTraversal’s function pre demonstrates the use.

template <class IprNode>
void StmtTraversal::pre(const IprNode& node)
{

// defined for all statements having expressions
using ::ez::traverse expr;

// empty fallback implementation (for nodes w/o expressions)
using ::ez::darkhole::traverse expr;

// traverse the sub expressions
traverse expr(node, trav);
}

Applications: The described traversal framework has been employed in the im-

plementation of TACE (Chapter VIII), the pattern match generator §III.C, and the

driver of the initializer list rejuvenation (Chapter VI).

III.B.4. Equality Comparison

Source code analysis often requires tests whether two nodes are equal. Whether

a specific equality test implementation is suitable depends on the type of analysis

(are two declarations equal if they refer to the same declaration or the same master

declaration?) and on the source of nodes (do the two nodes belong to the same

translation unit?).

47

In the described library, the equality tests checks two nodes that belong to

the same translation unit. The equality test utilizes the comparison tags described

in §III.B.1. The generated pattern matching code (§III.C) uses the equality tests to

determine whether two nodes are equal. The following design decisions have been

made accordingly:

• Id expr are equal if they refer to the same master declaration

• Names, often appearing in template code, are equal if they are written in exactly

the same way (including all scope references)

The next code snippet shows the interface.

template<class IprNode >
bool equal(const IprNode &lhs, const IprNode &rhs);

III.B.5. Implementation

Table II gives an overview of the described libraries and their implementation.

Table II. Support libraries overview

Files

Compile-time information ez/meta.hpp

Generic Visitor ez/generic visitor.hpp

Traversal Framework ez/travez.hpp

Equality Comparison ez/compez.hpp

48

III.C. A Lightweight Pattern Matching Tool

This section describes the use of a pattern match generation tool, its input language,

and its output. Chapter VI utilizes the pattern match generator to recover initializer

lists from C++ code.

The pattern matcher, as understood by this implementation, emphasizes stati-

cally checkable, and finite patterns. Consequently, the pattern match generator ex-

hibits more similarities to parser generators than to general purpose programming

languages. The pattern matcher reads in a pattern description file which is written in

a language that extends XPR with syntax to specify patterns. A pattern description

file consists of a sequence of patterns. Pattern definitions do not follow the typical

XPR style of declarations, where a name is followed by a colon. Instead, the pattern

name follows the prefix keyword pattern.

Pattern definitions are comprised of the following elements:

• interface and context specification §III.C.2.a: Names a pattern and specifies

what kind of IPR node the pattern will match.

• C++ like pattern specification §III.C.2.a: the body of the pattern can be com-

prised of several alternatives. The alternatives are specified in XPR.

• action blocks §III.C.2.a: for each alternative, user can specify a code sequence

that gets executed when the corresponding alternative matches.

• hole variables §III.C.2.b: placeholder objects that describe an AST node struc-

turally.

• matching of sequence (e.g., expression lists) §III.C.2.c

• pattern composition §III.C.2.d

49

• pattern parameters §III.C.2.e

Ambiguity resolution of several alternatives is discussed in §III.C.2.g, the gram-

mar of the input language is given by App. A. The grammar extends XPR with

productions that allow the specification of the pattern interface an hole variables.

For each specified pattern, the generates creates a class (with the same name

as the pattern) that implements the pattern matching in C++. An instance of such

a class is a functor, that tests whether an IPR node and its subtrees matches the

pattern description. This approach is lightweight because it is independent from any

specific traversal mechanism. The output can be integrated in any kind of traversal

and program query mechanism (e.g., top-down or bottom-up).

III.C.1. Motivation

Programmers think of programs in terms of higher level design and source code. Text

based analysis and transformation systems (e.g., grep) do not provide enough semantic

information for questions for more than trivial examples. Any analysis that requires

expanded macros, type information (including typedef) of expressions, or structural

and hierarchical data of user defined types relies on more sophisticated abstract pro-

gram representations. Using an abstract representation, such as the Pivot’s IPR,

introduces the problem that any abstract representation of source code depends on

idiosyncratic artifacts. We demonstrate with examples that writing code for matching

a specific pattern is non trivial:

• IPR has three kinds of nodes. Independent (e.g, declarations), unified (e.g,

literals), and singleton nodes (e.g., int and other built in types). The node

kind determines how to efficiently compare nodes for equality.

• declarations in expression context are wrapped in a Scope node. Uses of decla-

50

rations in expression context are wrapped by Id expr nodes.

• a name can refer to either a declaration, in which case it is wrapped in an

Id expr, or it refers to an unbound name (e.g., a built-in function, a template

argument dependent function), in which case the name is stored directly in the

AST.

• the use of template arguments are represented by a de Brujin abstraction [141],

called Rname. Depending whether the template argument is a type or not,

Rnames need to be converted into a type node (and are wrapped by As type

nodes).

The pattern matcher operates on a meta level of IPR. It uses the information how

a proper IPR is constructed to reduce a programmer’s need to write specification code

for common use cases. For example, expression nodes cannot point to declarations

directly — any reference to a declaration is wrapped by an Id expr. The pattern

matching wraps declarations automatically. The built-in domain specific knowledge

improves static checking. For example, it can report some ambiguities in the pattern.

III.C.2. Input Language

As input language, we use XPR augmented with a special notation to support the def-

inition of patterns, pattern variables, user defined matching, and (eventually) trans-

formation rules. The use of XPR allows pattern specification “by example” in a form

that is similar to the source language C++. The fact that XPR is semantically and

syntactically close to C++, empowers programmers to write patterns with only a short

learning period. Subsequently, the similarities between the pattern specification and

implementation language reduces the likelihood of errors.

51

III.C.2.a. Simple Patterns

A pattern declaration starts with the description of its interface. The keyword

pattern is followed by the pattern name (e.g., call pushback), the IPR base-type

that the pattern expects (e.g., Expr), and a list of additional arguments (e.g., an

empty parameter list ()).

pattern call pushback<Expr>()

The specification of the expected IPR base type is more than notational sugar.

The base type determines the parse context (i.e., the active production rule) of the

pattern body. For example, the specification of Expr lets the parser parse a comma

(,) as Comma expression; if the IPR base type is specified as Expr list a comma

separates a list of expressions. Consequently, statement patterns are terminated with

a semicolon, while expression patterns are not.

Patterns allow the specification of “pattern variables” (see §III.C.2.b for details).

Essentially, a pattern variable is a placeholder for any IPR-node that fits its declara-

tion. For example, we can declare a pattern variable (named obj and val) of type

Expr.

obj: Expr();
val: Expr();

A pattern body is enclosed by { and } and contains syntactical definitions of

alternatives. The following pattern contains a single alternative that matches the

invocation of a function push back that takes two arguments. Note, that the Pivot

represents member and non-member calls uniformly. For member calls, the receiver

object becomes an explicit function argument (i.e., obj). The left arrow (=>) separates

the syntactic pattern from semantic actions (empty in this example).

{
push back(obj, val) => ;
}

52

Alternative patterns: The body of a pattern can contain several alternatives.

The following pattern matches both invocations of push back and pop back.

{
push back(obj, val) => ;
pop back(obj) => ;
}

Action blocks: Each query can be followed by an optional semantic action. The

action executes if the preceding pattern matches. Actions can encode additional

matching criteria or user code (e.g., state transformations, tree rewrite operations).

The action blocks use XPR as their input language and allow the use of the declared

pattern variables. The action block in the following snippet tests whether the obj’s

type is a pointer to an STL [15] container. Only if the action block is completely

executed, the pattern matches successfully. The return statement (in the then-

branch of the if statement) leaves the action block prematurely. Thereafter, the

pattern matching tries a fallback alternative, if specified. Since this example specifies

no alternative, the pattern does not match when is stl container returns false. An

example for a fallback alternative would be an Expr pattern variable.

The content of action blocks is only syntactically checked and otherwise copied

verbatim into the generated C++ output files. Action blocks do not contribute to

ambiguity checking (§III.C.2.g). The use of action blocks is illustrated by the following

complete pattern.

A complete example: The following code presents the complete examples dis-

cussed in this section. It recognizes member function calls to push back and pop back

of STL container objects.

pattern call pushback<Expr>()
obj: Expr();
val: Expr();
{

push back(obj, val)
=> { if (!is stl container(obj−>type())) { return; }

53

else { std::cout << ”found push back”; };
};

pop back(obj)
=> { if (!is stl container(obj−>type())) { return; }

else { std::cout << ”found pop back”; };
};

}

III.C.2.b. Pattern Variables

Pattern variables (or hole variables [45]) are placeholder objects that bind to IPR

nodes, which match the declared type and structure of the variable. The example

in §III.C.2.a demonstrates the use of pattern variables.

Purpose: The purpose of pattern variables is twofold. First, by binding to IPR

nodes, variables make matching nodes available for queries, reports, and manipula-

tions in action blocks. Second, the criteria specification in the body of the pattern is

limited to syntax. To enable programmers to explicitly query for criteria that is not

expressible in source form, but that is part of the internal representation of the Pivot,

variable definitions can be augmented with structural information. For example, type

information has no direct syntactic correspondence in source and XPR form. In the

preceding example, queries for type information were expressed in the action block.

Augmenting variable declarations with structural properties exposes these properties

to the pattern matcher’s semantic checking (and optimizations).

Simple Pattern: The following code snippet demonstrates the use of pattern

variables. The example queries for additions, where both the left- and the right-

hand side subexpression are literal constants. The notion of the class literal cannot

be expressed in syntax form. Thus we introduce two variables, named literal x and

literal y, that are defined to have type Literal (and match any IPR node of type

ipr::Literal).

54

pattern literal addition<Expr>()
literal x : Literal();
literal y : Literal();
{

literal x + literal y => ;
}

Non-linear matching: Non-linear patterns are patterns where a variable occurs

more than once [151]. The first and any following occurrence of this variable have

to match, otherwise the AST tree does not match the pattern. The following code

snippet matches any addition, where the left and right hand side of the operator are

equal.

pattern double expr<Expr>()
e : Expr();
{

e + e => { if (is numeric(x−>type())) { /∗ replace x+x with 2∗x ∗/ } else {} };
}

Code examples that fulfill the specified criteria include: x+x, foo(x) + foo(x),

a*b + a*b (but not a*b + b*a), etc. The pattern matcher relieves programmers from

knowing implementation details, such as equality comparison. It simplifies writing

correct and efficient code.

Property definition: While variables allow to match entire classes of nodes, they

are not expressive enough to query all information present in the AST. Consider the

previous example, where the constraint on the type of the pattern variable (i.e., e’s

type refers to an STL container) was only specified in the action block. To allow for

more static checking, pattern variables can be augmented with additional structural

information (e.g., type, name, etc.) The following pattern constrains the pattern

variable to STL’s container types.

// assuming pattern StlContainer<Type> () { . . . }
x : Expr(StlContainer());

This syntax binds the property to a subtree of a node by position.

55

• Expr(type)

• for any unary expression: UnaryType (type, operand)

• . . .

• for any declaration: Decl (name, type, initializer)

An example is the following pattern variable declaration, that matches any vari-

able declaration of type int which is initialized to 0. The name of the variable remains

unspecified. The ellipsis is used as a “do not care” symbol.

v : Var(..., Int(), 0);

Future extensions: It might be desirable to extend the specification of queryable

properties to include other data (e.g., qualifiers, master declarations — a Pivot term

that refers to the first declaration that appears in an translation unit, etc.) present

in the AST. In such a scenario, a fixed binding of a property position to an AST

subtree might become cumbersome. An alternative syntax would make the name of

the subtree / property explicit:

term : Expr(type = Int());

A complementary alternative syntax would allow to mix XPR style code with

structural declarations:

term : Expr(∗∗int); // instead of Expr(Pointer(Pointer(Int())));

III.C.2.c. Matching Sequences

Sequences, such as argument lists of function calls, require a mechanism to query

some properties of each element. For example, querying for function calls that pass

at least one literal as argument (e.g., for constant propagation) requires the traversal

of the calls’ argument list. The mechanism of choice for the pattern matcher is tail

56

recursion. The following code snippet defines two variables, x and y. If the first

argument is a literal, the first syntactic pattern (*1) matches. Otherwise, the second

branch (*2) accepts any expression node. The recursive invocation of has constant

continues to match the remaining arguments (if any).

pattern has constant<ipr::Expr list>()
x : Literal();
y : Expr();
{

x ; // ∗1 a argument is a literal
y, has constant() ; // ∗2 not a literal
}

End of sequences The pattern matcher allows various terminal elements of se-

quences. For example, any pattern sequence containing three elements (like a, b, c)

matches only AST sequences having exactly three elements. We call such a sequence

closed.

// closed ended sequences
// x, y, z are expressions
x, y, z; // matches an argument list with exactly three arguments
push back(obj, val); // matches any push back with two elements

For the specification of sequences, where partial matching is sufficient (e.g., a

single argument, or the first two arguments), we introduce a “do-not-care” symbol

(i.e., “...”). Note, that the last element of the list and the do-not-care symbol are

not separated by comma. A sequence terminating with the do-not-care symbol is

open.

// open ended sequence
// x, y, obj are expressions
// n is an integer expression
x, y ... // matches an argument list with two or more arguments
resize(obj, n ...); // matches any resize with two or more arguments

Patterns that iterate through elements are terminated by a (recursive) call to a

pattern that is defined over the same sequence type. Typically, this would be a tail

recursion.

57

// tail call
// x is an expression
// has constant is a pattern taking an Expr list
x, has constant() // tail recursion that traverses the argument list

Alternatives with differing termination have the following precedence rules:

• patterns that are not terminated by a call to sequence pattern or the “do not

care symbol” have highest precedence.

• calls of sequence pattern

• sequence patterns terminated with the “do not care symbol” have lowest prece-

dence.

III.C.2.d. Pattern Calls

To avoid code duplication and repetitive pattern specification, it is desirable to factor

common queries into separate, reusable patterns. For example, we could combine

several semantically equivalent but syntactically different ways of writing code into

a pattern. Consider a case, that queries variable incrementation by one (e.g., to find

for-each loops). We could specify the following pattern:

pattern increment by one<Expr>(x : Var())
{

++x => ;
x++ => ;
x += 1 => ;
x = x + 1 => ;
// . . .
}

Context information and results can be passed as pattern arguments. For ex-

ample, to record which variable is incremented by one, the pattern utilizes a variable

(x). The following code demonstrates the invocation of increment by one with an

example.

58

pattern loop body<Expr>()
v : Var();
{

increment by one(v)
=> { increment variable(v); }; // attempts to match increment by one

// other interesting expressions in the loop body
};

Since the programmer uses the variable inside the action, the variable is defined

in the calling pattern (loop body) and passed as argument to the called pattern

(increment by one). Details on pattern parameters are discussed in §III.C.2.e.

III.C.2.e. Pattern Arguments

The list of pattern parameters allows programmers to pass variables from the context

to a pattern. Parameters can either be pattern variables (bound and unbound) or have

a user defined type. The semantic difference between matching bound and unbound

variable makes it necessary to syntactically differentiate the parameter type.

• unbound parameters: parameters that have not yet been matched by the call-

ing pattern. Like local variables, unbound parameters can have supplemental

requirements. The typing rules require the formal parameter (P) be a subtype

of the actual argument (A). The typical subtyping rules apply:

P (p1, . . . , pn) <: A(a1, . . . , an), iff P <: A ∧ ∀
i<n

pi <: ai

This typing rule requires that the unbound variables are less specific than the

parameter specification. This guarantees that matching AST nodes can be as-

signed to pattern variables. The following code snippet demonstrates the typing

rules with examples. The variable y is more specific than what some pattern’s

parameter requires. The body of some pattern cannot guarantee, that a match-

ing variable would have a name called “x”. On the contrary, passing z is allowed,

59

because any variable of type int is also an expression.

pattern some pattern<Expr>(unbound variable : Var(..., Int())) {}
pattern caller<Expr>()

y : Var(”x”, int);
z : Expr();
{

some pattern(y) => ; // error
some pattern(z) => ; // ok
}

• bound parameters: in non-linear patterns, bound parameters have been matched

in the calling pattern, any subsequent match in the called pattern has to equal

the first matching node. Since bound parameters are already defined, no sup-

plemental properties can be specified. Bound parameters are prefixed with a

an ampersand (&).

pattern some pattern<Expr>(bound variable : &Var) {}

• undecided parameters: in some scenarios (e.g., with a number of pattern calls)

it seems desirable to have parameters where the status can remain undecided.

pattern some pattern<Expr>(v : Var(), l : Literal())
{

l => ; /∗ matches any literal ∗/
v => ; /∗ matches any variable ∗/
}
pattern caller<Expr>()

v : Var();
l : Literal();
{

// v,l are underspecified in the second call
some pattern(v,l) + some pattern(v,l) =>; // error,
}

The pattern matcher does currently not support such variables.

Besides domain specific pattern variables, users can also pass parameters that

have any regular C++ type (including user defined types). Such parameters can be

passed on to other pattern calls, or be used inside actions blocks. For example:

60

pattern some pattern<Expr>(x : &Var, y : &int)
{

x => { ++y; };
}

Design Alternative: If we allow patterns passed as arguments, we could general-

ize and allow user defined code (e.g., written in C++) that meets certain interface

requirements. Such a feature is currently not implemented, because the pattern

matcher would not be able to include user defined code in its semantic checking.

Some common scenarios can be modeled using the action block that contains code

matching a node against a user specified pattern.

pattern some pattern<Expr>(udp : &UserDefinedPredicate)
x : Expr();
l : Literal();
{

x + l => { if (!udp(x)) { return; } else { /∗ OK ∗/ } };
// ↑↑↑↑↑ user defined matching
}

III.C.2.f. Matching Order

The pattern matcher uses a predetermined order to match the subtrees of a given IPR

node. For example, a binary expression first traverses the left subexpression, then the

right subexpression, and then the type (if needed). The predetermined traversal order

together with the syntactical different notation of bound and unbound parameters

allows the pattern matcher to validate that the arguments of a pattern call are indeed

bound or unbound, according to the specification in the pattern declaration.

III.C.2.g. Ambiguity Checking and Resolution

A pattern can contain several queries, the pattern matcher requires a policy to handle

ambiguities. Consider the following pattern:

pattern zero addition<Expr>()

61

term : Expr();
{

term + 0 => ; /∗ 1 ∗/
0 + term => ; /∗ 2 ∗/

}

The expression 0 + 0 is a match for both alternatives and therefore ambiguous.

The following policies can resolve ambiguities:

• traversal order specificity: This policy resolves ambiguities by preferring the

query that is more specific earlier in the traversal order. For the given example,

the generator matches the IPR nodes in the following order: The first match

verifies that the current expression is an Add node. If this match succeeds, the

matcher processes the node’s left hand side expression (lhs). If lhs is a Literal

with the value 0, the second alternative (2) is chosen. Otherwise the matcher

falls back to match the AST subtree tree against query (1).

• lexicographical order: This policy resolves ambiguities by preferring earlier al-

ternatives in the pattern body. In this example, alternative (1) is preferred over

(2).

• full ambiguity checking: This policy detects ambiguous alternatives and reports

them. The pattern match generator only accepts patterns that are ambiguity

free. The example would be rejected.

A potential objection to this resolution policy is that for complex patterns users

could be required to resolve a number of ambiguous cases. Ambiguity resolution

would require near duplication of the preferred alternative and action block.

• no ambiguity resolution: An AST can have multiple matching alternatives.

The action block of each matching alternative is executed in arbitrary order.

62

Refinements of these techniques have to define, how subsumption is handled

(e.g., alternatives are specified for Expr and Literal.

The choice of ambiguity resolution policy does not affect the runtime of the

pattern matching code.

The current implementation resolves ambiguities according to traversal order

specificity. Cases where multiple alternatives exhibit the same matching sequence are

rejected and reported to the programmer.

III.C.3. Output

The pattern match generator converts the high-level pattern declaration into a family

of C++ classes. In essence, the family of classes implement a state machine that

recognizes the specified patterns.

State transitions that depend on the dynamic type of ipr-Nodes are implemented

with the visitor pattern. State transitions that depend on unified nodes, singleton

nodes, or certain values of nodes (e.g., a literal has the value 0), are implemented

with cascading branches. By using the visitor pattern to recover type information,

the generated state machine can follow the most suitable type branch out of a number

of alternatives. To benefit from this trait, the pattern match generator represents

alternative patterns as a trie [75]. The following example matches the addition of two

literals (1) or two expressions whose type is a fundamental type (2).

pattern foo<Expr>()
lit1 : Literal();
lit2 : Literal();
e : Expr(FundamentalType());
{

/∗ 1 ∗/ lit1 + lit2 => /∗ action code omitted ∗/;
/∗ 2 ∗/ exp + exp => /∗ action code omitted ∗/;
}

Fig. 5 depicts the pattern’ trie representation. A trie exploits the common prefix

63

of alternatives. In this example, the two alternatives share the recovery code for the

binary plus operation (p). If p’s left hand side operand is a literal, the matching

proceeds along the first (top) path. If the p’s right hand side operand is not a literal,

matching falls back to the second line. If p’s left hand side is not a literal (it has to

be an expression), the matching proceeds along the second path. In this case, both

of p’s operands have to be equal.

Fig. 5. Alternatives in a pattern trie

Matching patterns against an AST can be implemented in various ways. One

approach is tree matching. It matches the specified pattern against each node in

the AST. Another approach is based on string matching. It converts both AST

and pattern to strings that can be compared using more efficient string matching

implementations. We will discuss the implementation of both strategies. The current

implementation is based on the simpler tree matching approach.

III.C.3.a. Tree Matching

Direct tree matching uses a rather näıve matching approach. From a given node, the

pattern matcher traverses all interesting subtrees until a node does not match the

pattern (failure), or no more nodes remain to match (success). No information is

carried over from matching a node to matching all children of the node. This results

64

in a worst case complexity of O(p ∗ c) (p = nodes(subtree), c = nodes(pattern)).

Since the matching stops when a failure state is reached, the average case complexity

is expected to be significantly better.

Tree matching implementations (can) have the traversal mechanism built in.

An advantage of this approach is that the traversal of uninteresting subtrees can be

skipped. For example, if the pattern does not query type information, no code for type

traversal is generated. A disadvantage of building the traversal into the pattern is

that whether to skip compiler generated nodes has to be known at pattern-generation

time.

III.C.3.b. String Matching

Based on non-linear pattern matching as described by Ramesh and Ramakrishnan [151],

the patterns are turned into strings in order to use the Aho-Corasick algorithm for

string matching [8]. The basic idea is the following: every pattern is turned into

a string that is terminated by a pattern variable (or pattern delimiter). Consider

the pattern term+0 as depicted in Fig. 6. Off-line preprocessing first linearizes the

traversal (depicted in Fig. 7).

Fig. 6. Pattern tree

Then preprocessing splits the string at the variable (i.e., term) into two sub-strings.

In Fig. 7, the splitting point is marked with a dotted gray arrow.

Based on this strings, an Aho-Corasick string recognition automaton is con-

65

Fig. 7. Pattern tree — string traversal

structed. The traversal mechanism passes each node to the constructed automaton

in a predetermined order. After the node and its subtrees have been completely tra-

versed, the pattern matcher knows which strings match. The final step is to determine

whether the substring matches are consistent with the pattern (and its non-linear pat-

tern variables). This results in a worst case complexity of O(p ∗ k) (p = nodes in the

subtree, k = number of variables (= number of substrings)).

III.C.3.c. Runtime Engine

Any of the two preceding approaches could also be implemented by a runtime engine

that interprets a pattern definition.

III.C.3.d. Comparison

Table III summarizes trade-offs of implementation strategies: comparing direct tree

matching with the string matching approach k << c is expected. Thus, string match-

ing should perform better than direct tree matching. Real results will vary depending

on the average depth (c∗) of partial matches. We expect avg(c∗) << c and conse-

quently argue that string matching improves performance marginally in practice. Our

conjecture awaits practical results.

Linearizing the tree into a string representation is an off-line process. An external

traversal mechanism has to adhere to the same traversal order. On one side, an

external traversal is more flexible as it can skip uninteresting intermediate nodes (e.g.,

66

Table III. Pattern matching strategies

String Matching Tree Matching

Worst case complexity p * k p * c

Avg case complexity depends on matching depth

Binding to traversal tight — relaxed —

sensitive to traversal traversal can be built-in

order of children

Skip/Not-skip compiler depends on traversal code must be generated

generated nodes correspondingly

p .. node count in the subtree

k .. number of pattern variables

c .. node count in the pattern

compiler generated nodes, parenthesis, etc.) On the other side, a built-in traversal

mechanism, as used by our implementation, has more information about the location

of interesting subtrees. It can skip subtrees, such as type specification, if they are

not part of the pattern specification. The disadvantage of a built-in mechanism is

that it has to be known at pattern generation time which intermediary nodes can be

skipped.

III.C.4. Future Work

The design choices made for the pattern match generator have been guided by its

use for C++0x initializer lists recovery. The pattern match generator can be improved

in a number of directions. In particular, we would like to mention three possible

improvements.

67

Property specification: The fixed order of properties in “constructor calls” to hole

variables can be replaced with named properties. This would make the declaration

syntax and use of hole variables more flexible.

Pattern variables as arguments: The current implementation tracks whether a

hole variable has already an assigned value. This is necessary for an efficient imple-

mentation of matching nodes. However, this scheme is too rigid for scenarios, where

a pattern consists of consecutive pattern calls. The first pattern can have multiple

unbound parameters. If the pattern variables are not used in all alternatives, we

cannot determine whether the variables have been bound to concrete AST nodes.

Calls to the second pattern cannot use the same pattern variables as argument, since

we cannot statically determine their state. A possible solution would allow a third,

unspecified kind of hole variable as argument.

Factor out traversal code from pattern matching code: The generated pattern

match classes match an IPR node and its subtrees against the pattern specification.

The traversal of subtrees is statically generated for each pattern match class. This

makes it hard to write patterns that can handle propagation of constants or symbolic

expressions. Separating the pattern matching code from the traversal would simplify

the use of the pattern matcher in these respects.

68

CHAPTER IV

THE OPEN-METHODS LANGUAGE EXTENSIONS

Multiple dispatch, the selection of a function to be invoked based on the dynamic

type of two or more arguments, is a solution to several classical problems in object-

oriented programming. Open multi-methods generalize multiple dispatch towards

open-class extensions [66], which improve separation of concerns and provisions for

retroactive design. We present the rationale, design, implementation, performance,

programming guidelines, and experiences of working with a language feature, called

open multi-methods, for C++. Our open multi-methods support both repeated and

virtual inheritance. Our call resolution rules generalize both virtual function dispatch

and overload resolution semantics. After using all information from argument types,

these rules can resolve further ambiguities by using covariant return types. Care

was taken to integrate open multi-methods with existing C++ language features and

rules. We describe a model implementation and compare its performance and space

requirements to existing open multi-method extensions and workaround techniques for

C++. Compared to these techniques, our approach is simpler to use, catches more user

mistakes, and resolves more ambiguities through link-time analysis, is comparable in

memory usage, and runs significantly faster. In particular, the runtime cost of calling

an open multi-method is constant and less than the cost of a double dispatch (two

virtual function calls). Finally, we provide a sketch of a design for open multi-methods

in the presence of dynamic loading and linking of libraries.

IV.A. Introduction

Runtime polymorphism is a fundamental concept of object-oriented programming,

typically achieved by late binding of method invocations. “Method” is a common term

69

for a function chosen through runtime polymorphic dispatch. Most OOP languages

(e.g., C++ [171], Eiffel [122], Java [14], Simula [31], and Smalltalk [82]) use only a single

parameter at runtime to determine the method to be invoked (“single dispatch”). This

is a well-known problem for operations where the choice of a method depends on the

types of two or more arguments (“multiple dispatch”). For example, this problem has

been studied in context of the binary method problem [38]. A separate problem is that

dynamically dispatched functions have to be declared within class definitions. This is

intrusive and often requires more foresight than class designers possess, complicating

maintenance and limiting the extensibility of libraries. Open-methods provide an

abstraction mechanism that solves these two problems by separating operations from

classes and enabling the choice of dynamic vs. static dispatch on a per-parameter

basis.

Workarounds for both of these problems exist for single-dispatch languages. In

particular, the visitor pattern (double dispatch) [79] circumvents these problems with-

out compromising type safety. Using the visitor pattern, the class designer provides

an accept method in each class and defines the interface of the visitor. This interface

definition, however, limits the ability to introduce new subclasses and hence curtails

program extensibility [48]. Visser [190] presents a possible solution to the extensibil-

ity problem in the context of visitor combinators, which make use of runtime type

information (RTTI).

Providing dynamic dispatch for multiple arguments avoids the restrictions of

double dispatch. When declared within classes, such functions are often referred to

as “multi-methods”. When declared independently of the type on which they dis-

patch, such functions are often referred to as open-class extensions, accessory func-

tions [195], arbitrary multi-methods [130], or “open-methods”. Languages supporting

multiple dispatch include CLOS [168], MultiJava [48, 129], Dylan [157], and Ce-

70

cil [42]). We implemented and measured both multi-methods and open-methods.

Since open-methods address a larger class of design problems than multi-methods

and are not significantly more expensive in time or space, our discussion concentrates

on open-methods.

Generalizing from single dispatch to open-methods raises the question how to

resolve function invocations when no overrider provides an exact type match for the

runtime-types of the arguments. Symmetric dispatch treats each argument alike but

is subject to ambiguity conflicts. Asymmetric dispatch resolves conflicts by ordering

the arguments based on some criteria (e.g., an argument list is considered left-to-

right). Asymmetric dispatch semantics is simple and ambiguity free (if not necessar-

ily unsurprising to the programmer), but it is not without criticism [41]. It differs

radically from C++’s symmetric function overload resolution rules and does not catch

ambiguities.

We derive our design goals for the open-method extension from the C++ design

principles outlined in [170, §4]. For open-methods, this means the following: open-

methods should address several specific problems, be more convenient to use than

all workarounds (e.g., the visitor pattern), and outperform them in both time and

space. They should neither prevent separate compilation of translation units nor in-

crease the cost of ordinary virtual function calls. Open-methods should be orthogonal

to exception handling in order to be considered suitable for hard real-time systems

(e.g., [112]), and parallel to the virtual and overload resolution semantics.

IV.B. Application Domains

Whether open-methods address a sufficient range of problems to be a worthwhile

language extension is a popular question. We think they do, but like all style ques-

71

tions it is not a question that can in general be settled without examples and data.

This is why in the context of this dissertation we start with presenting examples

that we consider characteristic for larger classes of problems and that would bene-

fit significantly from language level support for multiple dispatch. We then explain

fundamentals that drive the design, provide the details of our implementation and

compare its performance to alternative solutions. In what follows, we mark examples

with 1 when they primarily demonstrate multiple dispatch and with 2 when they

demonstrate open-class extensions.

IV.B.1. Shape Intersection

An intersect operation is a classical example of multi-method usage [170, §13.8]. For

a hierarchy of shapes, intersect() decides if two shapes intersect. Handling all

different combinations of shapes (including those added later by library users) can be

quite a challenge. Worse, a programmer needs specific knowledge of a pair of shapes

to use the most specific and efficient algorithm.

Using the multi-method syntax from [170, §13.8], with virtual indicating run-

time dispatch, we can write:

bool intersect (virtual const Shape&, virtual const Shape&); // open−method
bool intersect (virtual const Rectangle&, virtual const Circle &); // overrider

We note that for some shapes, such as rectangles and lines, the cost of double

dispatch can exceed the cost of the intersect algorithm itself.

IV.B.2. Data Format Conversion

Consider an image format library, written for domains such as image processing or

web browsing. Conversion between different representations is not among the core

concerns of an image class and a designer of a format typically cannot know all

72

Image

RasterImage

Lossl essI mage LossyImage

RandomAccessImage CompressedImage

VectorImage

YUV CMYK RGB

PalletizedRGB TrueColorRGB PackedYUV PlanarYUV

Fig. 8. Image format hierarchy

other formats. Designing a class hierarchy that takes aspects like this into account is

hard, particularly when these aspects depend on polymorphic behavior. In this case,

generic handling of formats by converting them to and from a common representation

in general gives unacceptable performance, degradation in image quality, loss of in-

formation, etc. An optimal conversion between different formats requires knowledge

of exact source and destination types, therefore it is desirable to have open-class ex-

tensions in the language, like open-methods. Fig. 8 shows some classes of a realistic

image format hierarchy:

A host of concrete image formats such as RGB24, JPEG, and planar YUY2 will

be represented by further derivations. The optimal conversion algorithm must be

chosen based on a source-target pair of formats [96, 189]. In §V.B.1, we present an

implementation of this example, here we simply demonstrate with a call:

bool convert(virtual const image& src, virtual image& dst);

RGB24 bmp(”image.bmp”);
JPEG jpeg;
convert(bmp, jpeg);

73

IV.B.3. Type Conversions in Scripting Languages

Similar to §IV.B.2, this example demonstrates the benefits of open-methods in the

context of type conversions. Languages used for scripting are often dynamically typed

and a value may often be converted to other types depending on use. For example,

a variable x initialized as string can be used in contexts where integers or even dates

are expected, while a variable y initialized as integer can be used in the concatenation

operations of strings. In such cases, an interpreter will try to convert actual values

to the type required in the context according to some conversion rules. A typical

implementation of such conversion will use either nested switch statements or a table

of pointers to appropriate conversion routines. None of these approaches is extensible

or easy to maintain. However, multi-methods provide a natural mechanism for such

implementations:

class ScriptableObject { ~virtual ScriptableObject (); };
class Number : ScriptableObject {};
class Integer : Number {};
class String : ScriptableObject {};
void convert(virtual const ScriptableObject & src, virtual ScriptableObject & tgt);
void convert(virtual const Number& src , virtual String & tgt);
void convert(virtual const String& src , virtual Number& tgt);
// ... etc.

IV.B.4. Compiler Pass over an AST

High-level source-to-source transformation infrastructures [177, 155] typically use ab-

stract syntax trees (AST) to represent programs. Using OOP, the commonalities of

the AST classes can be factored in an OO-hierarchy. Then, programmers can write

runtime polymorphic code for a family of classes by using pointers/references to a

common base class.

struct Expr { virtual ~Expr(); };
struct UnaryExpr : Expr { Expr& operand; };

74

struct NotExpr : UnaryExpr {};
struct ComplementExpr : UnaryExpr {};
const Expr& propagate constants(virtual const Expr& e);

For example, an expression class (i.e., Expr) would be the common base for

unary (e.g., not or complement) and binary expressions (e.g., add or multiplication).

Analysis or transformation passes that take the semantics of the expression into ac-

count (e.g., for propagating constants) need to uncover the underlying type. Typi-

cal implementations rely on the visitor pattern or type-tags to uncover this concrete

type. Open-methods are a non-intrusive alternative for writing these compiler passes.

In §V.B.2, we discuss our experience in implementing such a pass with open-methods

and visitors.

IV.B.5. Binary Method Problem

Often times we have a two-argument method, whose meaning is trivial to define when

both arguments are of the same type, but not so obvious in cases when arguments

are of different, though related through inheritance, types. Such methods are well

studied (e.g., Bruce et al [38], Boyland and Castagna [34], Langer and Kreft [109])

and characteristic to many logical and arithmetic operations. Bruce et al. call such

a function a binary method. They define binary method of some object of type τ as

a method that has an argument of the same type τ . Binary methods pose a typing

problem and among different solutions to the problem, the authors propose to use

multi-methods.

In the multi-methods setting, binary methods simply become multi-methods with

two arguments of the same type. Consider for example an equality comparison of two

objects:

class Point { double x, y; };
bool equal(const Point& a, const Point& b) {

75

return a.x == b.x && a.y == b.y;
}
class ColorPoint : Point { Color c; };

When a class ColorPoint derives from Point and adds a color property, the

question arises on how equal should be defined: should it just compare the coordinates

or should it also compare the color properties of both arguments? The second option

is only viable if both arguments are of type ColorPoint. If the argument types differ,

we can choose either to return false or to compare the coordinates only. Depending

on the problem domain both choices can be acceptable. Here we simply note that

multi-methods are an ideal solution for the implementation of the latter policy where

the comparison of Point with ColorPoint only compares coordinates:

bool equal(virtual const Point& a, virtual const Point& b);
bool equal(virtual const ColorPoint& a, virtual const ColorPoint& b);

IV.B.6. Algorithm Selection Using Dynamic Properties of Objects

Often, we can use dynamic types to choose a better algorithm for an operation than

would be possible using only static information. Using open-methods we can use

the dynamic type information to select more efficient algorithms at runtime with-

out added complexity or particular foresight. Consider a matrix library providing

algorithms optimized for matrices with specific dynamic properties. Storing these

dynamic properties as object attributes is not easily extensible and is error prone in

practice. Letting the compiler track them using open-methods for dispatch (run-time

algorithm selection) is simpler. For instance, the result of A ∗ AT is a symmetric

matrix — if such a matrix appears somewhere in computations, we may consider a

broader set of algorithms when the result is used in other computations.

class Matrix { virtual ~Matrix(); };
class SymMatrix : Matrix {}; // symmetric matrix
class DiagMatrix : SymMatrix {}; // diagonal matrix

76

Matrix& operator+(virtual const Matrix& a, virtual const Matrix& b);
SymMatrix& operator+(virtual const SymMatrix& a, virtual const SymMatrix& b);
DiagMatrix& operator+(virtual const DiagMatrix& a, virtual const DiagMatrix& b);

Depending on the runtime type of the arguments, the most specific addition

algorithm is selected at runtime and the most specific result type returned. The

static result type would still be Matrix& when the static type of an argument is a

Matrix& since we cannot draw a more precise conclusion about the dynamic type

of the result (see §IV.C.4 and §IV.D.2 for details). However, since the operator is

selected according to the dynamic type, the optimal algorithm will be used for the

result when it is part of a larger expression.

Other interesting properties to exploit include whether the matrix is upper/lower

triangular, diagonal, unitary, non-singular, or symmetric/Hermitian positive definite.

Physical representations of those matrices may also take advantage of the knowledge

about the structure of a particular matrix and use less space for storing the matrix.

The polymorphic nature of the multiple dispatch requires the result to be re-

turned by either reference or pointer to avoid slicing. Since the reference must refer

to a dynamically allocated object, this creates a lifetime problem for that object.

Common approaches to such problems include relying on a garbage collector and

using a proxy to manage lifetime. An efficient proxy is easy to write:

// A memory−managing proxy class (note lowercase name).
class matrix
{

std:: unique ptr<Matrix> the matrix; // pointer to the actual polymorphic Matrix

matrix(Matrix& actual) : the matrix (&actual) {}
};
matrix operator+(const matrix& a, const matrix& b)
{

// Forward operator+ to the actual open−method and
// attach the result to the proxy.
return matrix(∗a. the matrix + ∗b.the matrix);

}

77

ToBinToStr

Action

File

DateBlobNum

Object

String ToClip FromClip

Clone

Fig. 9. Objects and actions

The unique ptr is a simple and efficient (not-reference counting) “smart” pointer

that is part of the C++0x standard [27] and has been widely available and used for

years [25].

IV.B.7. Action Systems

Dynamically typed languages, such as Smalltalk [82], Ruby [183] or Python [186], can

dispatch polymorphic calls on classes not bound by inheritance. As long as a method

with a given name exists in the class, it will be called, otherwise an exceptional

action is taken. Often, similar behavior is desirable in statically typed languages

with possible restriction to objects derived from a certain base class. To achieve this,

we may represent methods (here called actions) as objects and then apply a given

action to a given set of parameters.

Fig. 9 shows a class hierarchy with objects and actions. Note that the same

action applied to a different object may have a completely different meaning.

Object& execute(virtual const Action& act, virtual Object& obj);
String & execute(virtual const ToString& act, virtual Number& obj);

File & execute(virtual const SaveToFile& act, virtual Blob& obj);
// ... etc.

Action objects resemble function objects in C++ in a way. The main difference

between actions and C++ function objects is that actions participate in call dispatch-

ing on equal bases with other arguments, while function objects invariably define

78

the scope for call dispatching. Simply put, this means that in case of action objects,

other arguments of a call can affect the choice of a call’s target at runtime (symmetric

behavior), while with function objects they cannot (asymmetric behavior).

IV.B.8. Extending Classes with Operations

Once defined, the object-oriented way to extend a class’s functionality is to derive

a new class and introduce the new behavior there. However, this technique only

succeeds if the programmer has control over the source code that instantiates objects

(for example, if the code has been designed to use a factory). Consider a system

framework that responds to various events. The events may require logging in different

logs and formats. While it is feasible to provide a common interface for different kinds

of logs, it is rather difficult to foresee all possible formats in which logging can be

done. Open-methods eliminate the need to modify class declarations directly, and

improve the support for separation of concerns.

struct Log {}; // Interface to different logs
struct FileLog : Log {}; // Logs to File
struct EventLog : Log {}; // Logs to OS event log
struct DebugLog : Log {}; // Logs to debug output

struct Event { virtual ~Event(); }; // Interface for various types of events
struct Access : Event {};
struct FileAccess : Access {};
struct DirectoryAccess : Access {};
struct DatabaseAccess : Access {};
// Specializations of how to log various types of events in text format
void log as text (virtual Access& evt, Log& log, int priority);
void log as text (virtual DirectoryAccess & evt, Log& log, int priority);

// Specializations of how to log various types of events in XML format
void log as xml (virtual Access& evt, Log& log, int priority);
void log as xml (virtual DirectoryAccess & evt, Log& log, int priority);

// Specializations of how to log various types of events in binary format
void log as binary (virtual Access& evt, Log& log, int priority);
void log as binary (virtual DirectoryAccess & evt, Log& log, int priority);

// etc. for any other formats that may be required in the future .

79

IV.B.9. Open-Methods Programming

The benefits noted in the examples stem from fundamental advantages offered by

open-methods. They allow us to approximate widely accepted programming princi-

ples better than more conventional language constructs and allow us to see conven-

tional solutions, such as visitors, as workaround techniques. For examples like the

ones presented above, open-methods simply express the design more directly. From

a programmer’s point of view open-methods

• are non-intrusive: We can provide runtime dispatch (a virtual function) for

objects of a class without modifying the definition of that class or its derived

classes. Using open-methods implies less nonessential coupling than conven-

tional alternatives.

• provide order independence for arguments : The rules for an argument are in-

dependent of whether it is the first, second, third, or whatever argument. The

first argument of a member function (the this pointer) is special only in that

it has notational support. The dynamic/static resolution choice has become

independent of the choice of argument order.

• improve ambiguity detection: Ambiguous calls are detected in a way that cannot

be done with only a per-argument check (as for conventional multiple dynamic

dispatch) or only a per-translation-unit check (as for conventional static check-

ing). Using open-methods there is simply more information for the compiler

and linker to use.

• provide multiple dynamic dispatch: We can directly select a function based on

multiple dynamic types; no workarounds are required.

80

• improve performance: faster than workarounds when more than one dynamic

type is involved with no memory overhead compared to popular workaround

techniques (see §V.A.7 and §V.C.2).

From a language design point of view, open-methods make the rules for overriding

and overloading more orthogonal. This simplifies language learning, programming,

reasoning about programs, and maintenance.

Potential objections to the use of open-methods include that:

• the set of operations on objects of a class are not defined within the class.

However, that is true as soon as you allow any free-standing function, which is

essential for conventional mathematical notation and programming styles based

on that. Information hiding is not affected.

• the first argument is not fundamentally different so open-methods do not obey

the “send a message to an object” (“object-oriented”) model of programming.

We consider that model unrealistically restrictive for many application domains,

such as disciplines that apply classical math [170].

• the set of overriders for a virtual function is not found within a specific set

of classes (the set of classes derived from the class that introduced the virtual

function). On the other hand, we never have to define a new derived class just

to be able to override.

• open-methods are open; that is, they do not provide a closed set of overloading

candidates for a given function name. We consider this a good feature in that

it allows for non-intrusive extension. For C++, the decision not to syntactically

distinguish overriders or overloaded functions was taken in 1983 and cannot be

changed now [170, §11.2.4].

81

Obviously, we consider open-methods a significant net gain compared to alternatives,

but the final proof (as far as proofs are possible when it comes to the value of pro-

gramming language features) will have to wait for the application of open-methods

in several large real-world programs.

IV.C. Definition of Open Methods

Open-methods are dynamically dispatched functions, where the callee depends on

the dynamic type of one or more arguments. ISO C++ supports compile-time (static)

function overloading on an arbitrary number of arguments and runtime (dynamic)

dispatch on a single argument. The two mechanisms are orthogonal and complemen-

tary. We define open-methods to generalize both, so our language extension must

unify their semantics. Our dynamic call resolution mechanism is modeled after the

overload resolution rules of C++. The ideal is to give the same result as static res-

olution would have given had we known all types at compile time. To achieve this,

we treat the set of overriders as a viable set of functions and choose the single most

specific method for the actual combination of types.

We derive our terminology from virtual functions: a function declared virtual in

a base class (super class) can be overridden in a derived class (sub class):

Definition 1 An open-method is a free-standing function with one or more param-

eters declared virtual.

Definition 2 An open-method f2 overrides an open-method f1 if it has the same

name, the same number of parameters, covariant virtual parameter types, invariant

non-virtual parameter types, and a possibly covariant return type. In such case, we

say that f2 is an overrider of f1.

82

Definition 3 An open-method that does not override another open-method is called

a base-method.

Definition 4 A base-method together with all the open-methods that override it form

an open-method family.

While this is not strictly necessary, for practical reasons we require that a base-

method should be declared before any of its overriders. This parallels other C++

rules and greatly simplifies compilation. This restriction does not prevent us from

declaring different overriders in different translation units. For every overrider and

base-method pair, the compiler checks if the exception specifications and covariant

return type (if present) comply with the semantics defined for virtual functions.

Definition 5 A Dispatch table (DT) maps the type-tuple of the base-method’s virtual

parameters to actual overriders that will be called for that type-tuple.

The following example demonstrates a simple class hierarchy and an open-method

defined on it:

struct A { virtual ~A(); } a;
struct B : A {} b;

void print(virtual A&, virtual A&); // (1) base−method
void print(virtual B&, virtual A&); // (2) overrider
void print(virtual B&, virtual B&); // (3) overrider

Here, both (2) and (3) are overriders of (1), allowing us to resolve calls involving every

combination of A’s and B’s. For example, a call print(a,b) will involve a conversion

of b to an A& and invoke (1). This is exactly what both static overload resolution and

double dispatch would have done.

To introduce the role of multiple inheritance, we can add to that example:

struct X { virtual ~X(); };
struct Y : X, A {};
void print(virtual X&, virtual X&); // (4) base−method
void print(virtual Y&, virtual Y&); // (5) overrider

83

Here (4) defines a new open-method print on the class hierarchy rooted in X. Y

inherits from both A and X, and according to our definition (5) overrides both (4)

and (1).

We note that whether it would be better to require an overrider to be explicitly

specified as such is an orthogonal decision beyond the scope of this dissertation. Here

we simply follow the C++ tradition set up by virtual functions to do this implicitly.

IV.C.1. Type Checking and Call Resolution of Open-Methods

Type checking and resolving calls to open-methods involves three stages: compile

time, link time, and runtime.

• overload resolution at compile time: the goal of overload resolution is to find a

unique open-method in the overload set visible at the call site, through which

the call can be (but not necessarily will be) dispatched. The open-method

determines the necessary casts of the arguments, and the return type expected

at the call site.

• ambiguity resolution at link time: the pre-linker aggregates all overriders of a

given open-method family, checks them for return type consistency, performs

ambiguity resolution, and builds the dispatch tables.

• dynamic dispatch at runtime: the dispatch mechanism looks up the entry in the

dispatch table that contains the most specific overrider for the dynamic types

of the arguments and invokes that overrider.

This three-stage approach parallels the resolution to the equivalent modular-checking

problem for template calls using concepts in C++0x [83]. Further, the use of open-

methods (as opposed to ordinary virtual functions and multi-methods) can be seen

as adding a runtime dimension to generic programming [15].

84

IV.C.2. Overload Resolution

The purpose of overload resolution in the context of open multi-methods is to identify

an open-method that the compiler will use for type checking and inferring the result

type expected from the call. In general, the C++ overload resolution rules [97] remain

unchanged: the viable set includes both open-methods and regular functions and the

compiler treats them equally. Once a unique best match is found, the call can be

type checked against it. For the dispatch, any of its base-methods can be chosen.

Which one is selected is irrelevant as any further overrider would likewise override all

base-methods.

Consider the following example:

struct X { virtual ~X(); };
struct Y { virtual ~Y(); };
struct Z { virtual ~Z(); };
void foo(virtual X&, virtual Y&); // (1) base−method
void foo(virtual Y&, virtual Y&); // (2) base−method
void foo(virtual Y&, virtual Z&); // (3) base−method

struct XY : X, Y {} xy;
struct YZ : Y, Z {} yz;

void foo(virtual XY&, virtual Y&); // (4) overrides 1 and 2
void foo(virtual Y&, virtual YZ&); // (5) overrides 2 and 3

A call foo(xy,yz) is ambiguous according to the standard overload resolution

rules as overriders 4 and 5 are equally good matches. To resolve this ambiguity, a user

may explicitly cast some or all of the arguments to make the call unambiguous accord-

ingly to the overload resolution rules: e.g., calling foo(xy,static cast<Y&>(yz))

will uniquely select 4 as a base-method for the call. Alternatively, a user may intro-

duce a new overrider void foo(virtual XY&, virtual YZ&), which will become a

unique best match for the call.

85

A

CB

A

D

A

CB

D

A

CB

D

Fig. 10. C++ inheritance models

IV.C.3. Ambiguity Resolution

Once we are in the ambiguity resolution phase done by the prelinker, we assume

that the overload resolution phase has selected a unique best match for type checking

of each open-method call site (otherwise it would have reported a compile-time er-

ror). At this phase we have information about all available overriders of a particular

open-method family, and we only report ambiguities that prevent us from building a

complete dispatch table.

C++ supports single-, repeated-, and virtual inheritance:

Note that to distinguish repeated and virtual inheritance, Fig. 10 represents sub-

object relationships, not just sub-class relationships. We must handle all ambiguities

that can arise in all these cases. By “handle” we mean resolve or detect as errors.

Our ideal for resolving open-method calls combines the ideals for virtual functions

and overloading:

• virtual functions: the same function is called regardless of the static types of

the arguments at the call site.

• overloading: a call is considered unambiguous if (and only if) every parameter

is at least as good a match for the actual argument as the equivalent parameter

of every other candidate function and that it has at least one parameter that is

86

a better match than the equivalent parameter of every other candidate function.

This implies that a call of a single-argument open-method is resolved equiv-

alently to a virtual function call. The rules described in this dissertation closely

approximate this ideal. As mentioned, the static resolution is done exactly according

to the usual C++ rules. The dynamic resolution is presented as the algorithm for

generating dispatch tables in §IV.C.5. Before looking at that algorithm, we present

some key motivating examples.

IV.C.3.a. Single Inheritance

In object models supporting single inheritance (§IV.C.3), ambiguities can only occur

with open-methods taking at least two virtual parameters. Such ambiguities can only

be introduced by new overriders, not by extending the class hierarchy. They can be

resolved by introducing a new overrider. Open-methods with one dynamic argument

are identical to virtual functions and are always ambiguity free. Thus, open-methods

provide an unsurprising mechanism for expressing non-intrusive (“external”) poly-

morphism. This eliminates the need to complicate a class hierarchy just to support

the later addition of additional “methods” in the form of visitors.

IV.C.3.b. Repeated Inheritance

Consider the repeated inheritance case (§IV.C.3) together with this set of open-

methods visible at a call site to foo(d1,d2), where d1 and d2 are of type D&:

void foo(virtual A&, virtual A&);
void foo(virtual B&, virtual B&);
void foo(virtual B&, virtual C&);
void foo(virtual C&, virtual B&);
void foo(virtual C&, virtual C&);

87

Even though, overriders for all possible combinations of B and C (the base classes

of D) are declared, the call with two arguments of type D gets rejected at compile

time. The problem in this case, is that there are multiple sub-objects of type A inside

D.

To resolve that conflict, a user can either add an overrider foo(D&,D&) visible

at the call site or explicitly cast arguments to either the B or C sub-object. Making

an overrider for foo(D&,D&) available at the call site eliminates the need to choose a

sub-object. It would always be dispatched to the same overrider.

If the (B,C)-vs.-(C,B) conflict is resolved by casting, a question remains on how

the linker should resolve a call with two arguments of type D? We know at runtime

(by looking into the virtual function table’s open-method table (see §IV.F)) which

“branch” of a D object (either B or C) is on. Thus, we can fill our dispatch table

appropriately; that is, for each combination of types, there is a unique “best match”

according to the usual C++ rules:

Table IV. Dispatch table with repeated base classes

A B C D/B D/C

A AA AA AA AA AA

B AA BB BC BB BC

C AA CB CC CB CC

D/B AA BB BC BB BC

D/C AA CB CC CB CC

Table IV depicts the dispatch table for the repeated-inheritance hierarchy in §IV.C.3

and the set of overriders above. Since the base method is foo(A&,A&) and A occurs

twice in D, each dimension has two entries for D: D/B meaning “D along the B

88

branch”. This resolution exactly matches our ideals.

Analog to single inheritance, extending a class hierarchy using repeated inheri-

tance cannot introduce ambiguities. Ambiguous sub-objects are determined at com-

pile time and reported as errors.

IV.C.3.c. Virtual Inheritance

Consider the virtual inheritance class hierarchy from §IV.C.3 together with the set of

open-methods from §IV.C.3.b: In contrast to repeated inheritance, a D has only one

A part, shared by B, C, and D. This causes a problem for calls requiring conversions,

such as foo(b,d); is that D to be considered a B or a C? There is not enough

information to resolve such a call. Note that the problem can arise in such a way

that we cannot catch it at compile time, because D’s definition could be in a different

translation unit:

C& rc = d;
foo(b,rc);
B& rb = d;
foo(b,rb);

Using static type information to resolve either call would violate the fundamental

rule for virtual function calls: use runtime type information to ensure that the same

overrider is called from every point of a class hierarchy. At runtime, the dispatch

mechanism will (only) know that we are calling foo with a B and a D. It is not known

whether (or when) to consider that D a B or a C. Based on this reasoning (embodied

in the algorithm in §IV.C.5) we must generate the dispatch table in Table V:

We cannot detect the ambiguities marked with ?? at compile time, but we can

catch them at link time when the entire set of classes and overriders is known.

89

Table V. Dispatch table with virtual base class

A B C D/A

A AA AA AA AA

B AA BB BC ??

C AA CB CC ??

D/A AA ?? ?? ??

IV.C.4. Covariant Return Types

Covariant return types are a useful element of C++. If anything, they appear to be

more useful for operations with multiple arguments than for single argument func-

tions. Covariant return types complicate the use of workaround techniques (§V.B.2).

As an example for using covariant return type, consider a class Symmetric derived

from Matrix:

Matrix& operator+(Matrix&, Matrix&);
Symmetric& operator+(Symmetric&, Symmetric&);

It follows that we must generalize the covariant return rules for open-methods.

Doing so turns out to be useful because covariant return types help resolve ambigui-

ties.

In single dispatch, covariance of a return type implies covariance of the receiver

object. Consequently, covariance of return types for open-methods implies an over-

rider (or) - base-method (bm) relationship between two open-methods. Liskov’s sub-

stitution principle [111] guarantees that any call type-checked based on bm can use

or’s covariant result without compromising type safety.

This can be used to eliminate what would otherwise have been ambiguities.

Consider the class hierarchies A ← B ← C and R1 ← R2 ← R3 together with this

set of open-methods:

90

R1∗ foo(virtual A&, virtual A&);
R2∗ foo(virtual A&, virtual B&);
R3∗ foo(virtual B&, virtual A&);

A call foo(b,b) appears to be ambiguous and the rules outlined so far would

indeed make it an error. However, choosing R2* foo(A&,B&) would throw away

information compared to using R3* foo(B&,A&): an R3 can be used wherever an R2

can, but R2 cannot be used wherever an R3 can. Therefore, we prefer a function with

a more derived return type and for this example get the result in Table VI:

Table VI. Resolution with covariance

A B C

A AA AB AB

B BA BA BA

C BA BA BA

At first glance, this may look useful, but ad hoc. However, a closer look reveals

that one of the choices is simply not type safe: a call to foo(b,b), type-checked

against R3* foo(B&,A&) at compile time, would expect a pointer to an object of type

R3 (or any of its sub-classes) returned, which R2 is not. This is why R2* foo(A&,B&)

cannot be used for dispatching such a call. On the other hand, the same call type-

checked against R2* foo(A&,B&) elsewhere is expecting a pointer to R2 (or any of its

sub-classes) returned from the call, and hence would readily accept R3. This is why

selecting R3* foo(B&,A&) is the only viable choice here, which consequently resolves

the ambiguity.

From an implementational perspective, an open-method with a return type that

differs from its base-method becomes a new base-method and requires its own dispatch

table (or equivalent implementation technique). The fundamental reason is the need

91

to adjust the return type in calls. Obviously, the resolutions for this new base-

method must be consistent with the resolution for its base-method (or we violate the

fundamental rule for virtual functions). However, since R2* foo(A&,B&) will not be

part of R3* foo(B&,A&)’s dispatch table, the only consistent resolution is the one we

chose.

If the return types of two overriders are siblings, then there is an ambiguity in

the type-tuple that is a meet of the parameter-type tuples. Consider for example that

R3 derives directly from R1 instead of R2, then none of the existing overriders can

be used for 〈B,B〉 tuple as its return type on one hand has to be a subtype of R2

and on the other a subtype of R3. To resolve this ambiguity, the user will have to

provide explicitly an overrider for 〈B,B〉, which must have the return type derived

from both R2 and R3.

Using the covariant return type for ambiguity resolution also allows the program-

mer to specify preference of one overrider over another when asymmetric dispatch

semantics is desired.

To conclude: covariant return types not only improve static type information,

but also enhance our ambiguity resolution mechanism. We are unaware of any other

multi-method proposal using a similar technique.

IV.C.5. Algorithm for Dispatch Table Generation

Let us assume we have a multi-method rf(h1, h2, ..., hk) with return type r and k

virtual arguments. Class hi is a base of the hierarchy of the ith argument. Hi = {c :

c <: hi} is a set of all classes from the hierarchy rooted at hi. Xf = H1×H2×· · ·×Hk

is the set of all possible argument type-tuples of f . Set Yf = {〈y1, y2, · · · , yk〉} ⊆

Xf is the set of argument type-tuples, on which the user defined overriders fj for

f . The set Of = {f0, · · · , fm−1} is the set of those overriders (f0 ≡ f). R =

92

{ri|rifi(y1, y2, · · · , yk)} is the set of return types of all the overriders. A mapping

Ff : Yf ↔ Of is a bijection between type-tuples on which overriders are defined and

the overriders themselves. A function Rf : Yf ↔ R maps an argument tuple of an

overrider to the return type of that overrider.

Because different derivation paths may get different entries in the dispatch table,

we assume that xi in the type-tuple x = 〈x1, · · · , xk〉 identifies not only the concrete

type, but also a particular derivation path for it (see [193] for formal definitions).

Under this assumption, we define β(xi) to be a direct ancestor (base-class) of xi in

the derivation path represented by xi. For example, for the repeated inheritance

hierarchy from §IV.C.3, β(D/B) = B, β(D/C) = C, β(C) = A, while for the virtual

inheritance hierarchy β(D/A) = A, β(B) = A, β(C) = A.

For the sake of convenience, we define:

βi(x) ≡ 〈x1, · · · , β(xi), · · · , xk〉, when β(xi) exists.

With it, we extend the definition of β to type-tuples as follows:

β(x) ≡ {βi(x) | βi(x) exists, i = 1, k}.

P (Xf , <P) : 〈x1, ..., xk〉 <P 〈y1, ..., yk〉 ⇔ ∀i : xi <: yi ∧ ∃j : yj ≮: xj defines a

partial ordering that models the ordering of viable functions for overload resolution as

defined by the C++ ISO standard 98 [97]. most specific arg(S) = {s ∈ S ⊆ Yf : @t ∈

S : t <P s} is the set of the most specific (refined) argument tuples of S with respect to

the partial ordering P . most specific res(S) = {s ∈ S ⊆ Yf : @t ∈ S : Rf (t) <: Rf (s)}

is the set of the most specific (refined) argument tuples of S with respect to sub-

classing relation <: on result types.

Dispatch table DTf is a mapping DTf : Xf → Yf that maps all possible argument

tuples to the argument tuples of overriders used for handling such a call.

93

For any combination of argument types x ∈ Xf , we recursively define entries of

the dispatch table DTf as following:

DTf [x] =

x, x ∈ Yf

DTf [s], s ∈ S =

most specific res(most specific arg({DTf(y)|y ∈ β(x)})) ∧ |S| = 1

Ambiguity, otherwise

The above recursion exhibits optimal substructure and has overlapping sub-

problems, which lets us use dynamic programming [54] to create an efficient algorithm

for generation of the dispatch table, as shown in Algorithm 1 and Algorithm 2.

To demonstrate with an example, consider a simple class hierarchy with two

classes A and B, where B derives from A, and two open-methods defined on the argu-

ment tuples 〈A,A〉 and 〈A,B〉. In this scenario Xf = {〈A,A〉, 〈B,A〉, 〈A,B〉, 〈B,B〉}

with the following relations that hold on these argument tuples: 〈A,B〉 <P 〈A,A〉;

〈B,A〉 <P 〈A,A〉; 〈B,B〉 <P 〈B,A〉; 〈B,B〉 <P 〈A,B〉; 〈B,B〉 <P 〈A,A〉;

The reverse topological order of elements in Xf would thus match the order in

which we listed tuples in Xf . Sets of immediate ancestors with respect to <P would

be:

β(x) =

∅, x = 〈A,A〉

{〈A,A〉}, x = 〈A,B〉

{〈A,A〉}, x = 〈B,A〉

{〈A,B〉, 〈B,A〉}, x = 〈B,B〉

Note, that the empty set of immediate ancestors is only possible on the tuple that

starts the open-method hierarchy, where we by definition would always have an over-

94

rider - the base-method. A set of argument tuples of overriders Yf = {〈A,A〉, 〈A,B〉}

and thus we can directly set DTf [〈A,A〉] = 〈A,A〉 and DTf [〈A,B〉] = 〈A,B〉

Now to fill in DTf [〈B,A〉] where 〈B,A〉 is the first element in reverse topo-

logical order of Xf that is not in Yf , we take the set of its immediate ancestors

β(〈B,A〉) = {〈A,A〉} and since there is only one, there cannot be a better match and

thus DTf [〈B,A〉]← DTf [〈A,A〉] = 〈A,A〉.

To fill in the remaining DTf [〈B,B〉] that comes last in the reverse topological

order, we look at its immediate ancestors β(〈B,B〉) = {〈A,B〉, 〈B,A〉} and compare

the overriders used for them: DTf [〈A,B〉] = 〈A,B〉 <P 〈A,A〉 = DTf [〈B,A〉]. Thus

we propagate the most specific overrider: DTf [〈B,B〉]← DTf [〈A,B〉] = 〈A,B〉

To analyze its performance, we first note that comparison of two type-tuples from

Xf can be done in time O(k). If n = max(|Hi|, i = 1, k) and v = max(vi, i = 1, k)

(where vi is a maximum number of times hi is used as non-virtual base class in any

class of hierarchy Hi) then |Xf | <= (n ∗ v)k and the amount of edges for topological

sort is less then k ∗ (n ∗ v)k. Therefore the complexity of topologically sorting Xf is

O(k ∗ nk). The inner for-loop has complexity O(k2 ∗ nk) so the overall complexity is

O(nk) since k is a constant defining the amount of virtual arguments. This means

that the algorithm is linear in the size of the dispatch table.

IV.C.6. Alternative Dispatch Semantics

While our goal is to unify virtual function dispatch and overload resolution into

an open-methods semantics, this is not always possible. Consider for example the

repeated inheritance class hierarchy from §IV.C.3 with a virtual function added:

struct A { virtual void foo(); }; // virtual function
struct B : A {};
struct C : A { virtual void foo(); }; // virtual function
struct D : B, C {};

95

void bar(A&); // overloaded function
void bar(C&); // overloaded function

void foobar(virtual A&); // open−method
void foobar(virtual C&); // open−method

D d;
B& db = d; // B part of D
C& dc = d; // C part of D

// (runtime) Virtual Member Function Semantics:
db.foo(); // calls A:: foo
dc. foo(); // calls C:: foo
d. foo(); // error : ambiguous

// (compile time) Overload Resolution Semantics:
bar(db); // calls bar(A&)
bar(dc); // calls bar(C&)
bar(d); // calls bar(C&) (why not ambiguous?)

// (runtime) open−method Semantics:
foobar(db); // calls foobar(A&)
foobar(dc); // calls foobar(C&)
foobar(d); // error : ambiguous

Virtual dispatch semantics and overload resolution semantics go different ways

in this case. Since the two language features are not entirely orthogonal, we had to

decide which semantics to follow.

From a technical point of view, both semantics can be implemented for open

multi-methods. The reason we decided not to model the semantics after overload

resolution in this case is that the resulting cross-casting behavior could have been

surprising to the user due to the implicit switching of different sub-objects. On the

other hand, the difference between the ordinary virtual function (foo) call and the

ordinary overloaded resolution for (bar) in this case is odd and depends on pretty ob-

scure rules that may be more historical than fundamental. Calls to the open-method

foobar follow the virtual function resolution. This is why our open-method seman-

tics strictly corresponds to virtual member function semantics in ISO C++ but does

not entirely reflect overload resolution semantics. The reason is that less informa-

96

tion is available for compile time resolution than for link-time or runtime resolution.

For example, the resolution of static cast and dynamic cast can differ even given

identical arguments: dynamic cast can use more information than static cast.

Due to our decision to model the semantics after virtual dispatch, we require

covariance of the return type on overriders, while had we modeled after overload

resolution, we could have only required convertibility of return types.

IV.D. Discussion of Design Decisions

Type-safety and ambiguities have always been a major concern to systems with multi-

ple open dispatch. One of the first widely known languages to support open-methods

was CLOS [168]. CLOS linearizes the class hierarchy and uses asymmetric dispatch

semantics to avoid ambiguity. Snyder [167] and Chambers [41, 42] observe that silent

ambiguity resolution makes errors in programs hard to spot. Therefore, Cecil uses

symmetric dispatch semantics and dispenses with object hierarchy linearization in

order to expose these errors at compile time. Recent studies [11, 77, 128, 130] ex-

plore the trade-offs between multi-methods and modular type-checking in languages

with neither a total order of classes nor asymmetric dispatch semantics. In particu-

lar, Millstein and Chambers discuss a number of models that embrace or restrict the

expressive power of the language to different degrees. The described models range

from globally type-checked programs to modularly type-checked units. We will briefly

discuss our evaluation of these approaches in the context of C++ later in this section.

This work aims for maximal flexibility and relies on a global type-checking [7]

approach for open-methods. We motivate this approach with the goal not only to

support object-oriented programming but also to enhance the support for functional

and generic programming styles in C++.

97

The cost of the global type-checking approach is that some ambiguities can be

detected late — in particular at the load time of dynamically linked libraries (DLL).

DLLs are almost universally used with C++, thus a design for open-methods that does

not allow for DLLs is largely theoretical. We do not currently have an implementation

supporting dynamic linking, but we outline a design addressing the major issues in

such a scenario.

Our guiding principle is to support the use cases described in §IV.B with language

features that are guaranteed to be type-safe in every scenario. The idea is to report

errors as long as we can assume that ambiguities can be resolved by programmers.

Only when it is too late for that, we have to use type-safe resolution mechanisms. This

section discusses the design decisions we have made based on three language aspects:

ambiguity resolution, covariant return types, and pure (abstract) open-methods.

IV.D.1. Late Ambiguities

Late ambiguities are ambiguities that are detected at a stage in the build process when

programmer intervention is no longer feasible. They can occur, for example, when

classes use virtual inheritance while some definitions necessary to declare a resolving

overrider cannot be accessed. Consider the example given in §IV.C.3.c. Examples for

late ambiguities include:

• the class D was defined as a local class, since the class name would be local to

the function scope.

• the class D was defined in an implementation file of a library, but the class

definition was not exported in a header file.

• a library defined classes A, B, and C as well as implemented, but did not export,

an open-method foo. The definition of D results in a late ambiguity.

98

In all cases, a programmer could not declare a resolving overrider.

A second source of late ambiguities is when independently developed libraries

define conflicting overriders, but the definition of one of the involved classes is not

available. Consider, the single inheritance hierarchy of §IV.C.3 with an open-method

foo(A,A). A library defines, but does not export B and an overrider for foo(B,

A), while another library defines C and an overrider for foo(A,C). A call foo(b,c)

is ambiguous but cannot be resolved, because the definition of B is not available.

Ambiguities that emerge from the use of dynamically linked libraries are always late.

Resolution mechanism for late ambiguities: If there is no unique best match for

a possible type tuple, we choose an overrider from all best matches. Interestingly, any

overrider will result in a correct program provided the rest of the program is correct

and in principle we could even pick a random overrider from the set of best matches.

Nevertheless, the choice is deterministic, but remains unspecified.

Not to specify which overrider we choose among type-safe candidates, keeps

the resolution mechanism symmetric as no candidate is preferred. The use of a

deterministic choice is not strictly necessary, but it allows for reproducibility - always

the same method will be selected from a set of candidates.

Consider the following example of image format conversion. For a discussion

of the problem and an implementation see §IV.B.2 and §V.B.1 respectively. The

following code shows a common header file and two independently developed libraries

that support additional image formats.

// Common header: ImageLibrary.h
struct Image {
virtual ~Image();
// . . .
};
struct TiffImage : Image { /∗ . . . ∗/ };
void convert(virtual const Image& from, virtual Image& to) { . . . }
void convert(virtual const TiffImage& from, virtual Image& to) { . . . }

99

void convert(virtual const Image& from, virtual TiffImage& to) { . . . }
// DLL−Jpeg supporting JPEG images
#include ”ImageLibrary.h”
struct JpegImage : Image { /∗ . . . ∗/ };
void convert(virtual const Image& from, virtual JpegImage& to) { . . . }
void convert(virtual const JpegImage& from, virtual Image& to) { . . . }
void convert(virtual const TiffImage& from, virtual JpegImage& to) { . . . }
void convert(virtual const JpegImage& from, virtual TiffImage& to) { . . . }
// DLL−Png supporting PNG images
#include ”ImageLibrary.h”
struct PngImage : Image { /∗ . . . ∗/ };
void convert(virtual const PngImage& from, virtual Image& to) { . . . }
void convert(virtual const Image& from, virtual PngImage& to) { . . . }
void convert(virtual const TiffImage& from, virtual PngImage& to) { . . . }
void convert(virtual const PngImage& from, virtual TiffImage& to) { . . . }

The header file of an image library framework defines two classes (i.e., Image,

TiffImage), and a base-method convert together with two overriders that implement

conversions from TiffImage to a general Image and vice versa. A library (DLL-

Jpeg) derives a new type JpegImage from Image and introduces new overriders for

convert that handle all possible combinations of known image formats. Likewise,

another library (DLL-Png) derives a new class PngImage from Image and introduces

similar overriders. Now a call to convert a JpegImage into a PngImage is ambiguous.

Libraries DLL-Jpeg and DLL-Png could stem from different vendors that do not know

about each other. In systems that use dynamically linked libraries, such problems

are hard to predict and design for.

Note that, since the class definitions of the respective other library were not

available when DLL-Png and DLL-Jpeg were implemented, neither developer could

possibly provide resolving overriders. The question thus arises to which convert

should a call convert(JpegImage, PngImage) resolve?

Any overrider (including base-method) has to assume that a dynamic type re-

solving to Image is an unknown derived type. Consequently, each convert must be

100

written so that it manipulates its arguments of types Image polymorphically (for ex-

ample, by using virtual functions). This implies that as long as convert’s code does

not make more assumptions about its arguments than the interface defined in the

base-class guarantees, any overrider can be chosen.

Alternative techniques to handle or prevent (late) ambiguities include asymmet-

ric choice, preventive elimination of overriders that could be prone to symmetry, or

exceptions that signal an error:

• system specified choice: Other systems with open-methods use a specified policy

to resolve ambiguities. These involves preferred treatment of overriders that are

more specialized on a specified argument (e.g., CLOS [168]) and class hierarchy

linearization (CLOS, Dylan [157]). Making the resolution explicit, breaks sym-

metric dispatch, as programmers can write code that exploits the specification.

• limit extensibility: Millstein and Chambers [128, 130] discuss limitations to the

type systems that prevent late ambiguities. Their system M disallows virtual

inheritance across modules. Moreover, open-methods have a specified argument

position. Adding overriders across module boundaries is permitted only when

the type in that argument is covariant and the type is defined in the same

module. MultiJava [48] is based on system M . In practice, these limitations

have been found to be overly restrictive (Relaxed MultiJava [129, 49] and C++

concepts [100]). In addition, requiring C++ code to comply with the provided

inheritance restrictions is not an option.

Allen et al. [11] develop a different set of restrictions for modular type checking

of multiple dispatch for Fortress [10]. Instead of restricting multiple inheritance

across modules, the notion of a meet function resolves ambiguities that orig-

inate from virtual inheritance. Moreover, their set of restrictions is sensitive

101

to whether a function is a multi-method (defined in class) or an open-method

(freestanding function). Overriding open-methods across module boundaries is

not possible. Like in System M , overriding multi-methods is tied to a single

distinguished argument position (the self argument) and the module of the type

definition.

Systems that require overriders defined in another module to override a specific

argument position with a covariant type defined in that module are unable to

handle bidirectional image conversion well. Assuming that the first argument is

special, DLL-Jpeg could not provide overriders for conversions to JpegImage.

• user specified choice: Parasitic methods as implemented in Java [35] (an im-

plementation for Smalltalk also exists [72]) add an object-oriented flavor to

multi-methods and make them an integral part of classes. Multi-methods can

be inherited from a base class and overridden (or shadowed) in the derived

class. Parasitic methods give the receiver precedence over other arguments.

The encapsulation guarantees that a compiler can check for multiple argument

ambiguities. Virtual inheritance ambiguities are implicitly resolved by users, as

the resolution is sensitive to the order of multi-method declarations within the

class definition.

Frost and Millstein [77] unify encapsulated multiple dispatch with predicate

dispatch. They replace the dependence on textual order with first match se-

mantics, where later predicates implicitly exclude earlier predicates.

The global checking presented in this dissertation resolves less virtual inher-

itance ambiguities silently than an encapsulated approach would. Moreover,

the use of encapsulation requires control over the construction of the receiver

object. Even if that can be handled by using a factory approach, this would

102

be unable to solve and only recast the ambiguity illustrated by the conversion

example: Which converter class takes precedence, the one defined by DLL-Jpeg

or the one defined by DLL-Png?

• glue-methods: Relaxed Multi-Java [129] resolves ambiguity conflicts by intro-

ducing glue methods (to glue DLL-Jpeg and DLL-Png) that the system-integrator

provides. This is a viable solution for software developers integrating several

libraries, but it is not a feasible scenario for end-user applications, as dynami-

cally linked modules can be loaded into the process without the direct request

of a developer. This is the case for various component object models where

applications may request an object by name from the system. The operating

system will locate and load the module in which the object resides.

• throw an exception: Some implementations (e.g., Cmm [166]) throw an excep-

tion at dispatch time when an ambiguity is encountered. We disagree with this

approach because each candidate alone is a type-safe choice and should be able

to handle the requested operation. Moreover, this approach forces programmers

to consider open-method calls as a potential source for exceptions, while their

choice of how to handle this exception is limited and likely will result in program

termination.

• program termination: Instead of waiting until runtime, the application can

terminate (or fail to link) when ambiguous overriders are detected. We argue

analogously to the exception case that termination is an inadequate response

for a choice among type-safe operations.

103

IV.D.2. Consistency of Covariant Return Types

Before we go into a detailed discussion, we would like to point out that the main

focus of this section is on the consistency of covariant return types among overriders

available at runtime. The use of covariant return type for ambiguity resolution is

orthogonal to the problems discussed here and is discussed in detail in §IV.C.4.

Different DLLs can specify conflicting covariant return types. Consider a two-

class hierarchy A← B and another two-class hierarchy R1← R2. The base-method

R1 foo(virtual A&, virtual A&) is defined in a header visible by two dynamically

linked modules D1 and D2 that do not know anything about each other. Module

D1 introduces overrider R2 foo(A&, B&) and module D2 introduces overrider R1

foo(B&, B&). Each of the dynamically linked modules perfectly type-checks and

links with foo() resolved through the dispatch table in Table VII (a superscript in a

cell denotes the type that is returned by an overrider e.g., AB2 denotes R2 foo(A&,

B&)):

Table VII. Call resolution in D1 and D2

AA1inD1 A B AA1inD2 A B

A AA1 AB2 A AA1 AA1

B AA1 AB2 B AA1 BB1

When both libraries are linked together, we get the dilemma of how to resolve a

call with both arguments of type B. On one side foo(B&,B&) from D2 is more special-

ized, but on the other side foo(A&,B&) from D1 imposes the additional requirement

that the return type of whatever is called for 〈B,B〉 should be a subtype of R2, which

R1 is not. Such scenario would be rejected at compile/link time, however at load time

104

we do not have this option anymore.

Keeping all dispatch tables of a particular open-method consistent on the over-

rider that will be called for a particular combination of types will force us to choose

between suboptimal and type unsafe alternatives. What is worse is that there may

not be a unique type-safe alternative.

Imagine for example that a module D3 introduces an overrider R3 foo(B&, A&)

where R1 ← R3, so R2 and R3 are siblings. When D1 and D3 are loaded together,

neither R2 foo(A&, B&) nor R3 foo(B&, A&) can be used to resolve a call with both

arguments of type B - both alternatives are type unsafe for the other overrider.

To deal with this subtlety, we propose for the DLL case to weaken the requirement

that the same overrider should be called for the same tuple of dynamic types regardless

of the static types used at the call site. We require that the same overrider be used only

if it is type-safe for the caller. Strictly speaking R1 foo(B&,B&) is not an overrider

of R2 foo(A&, B&) as defined in §IV.C, because its return type is not changing

covariantly in respect to the types of arguments. Therefore, it cannot be considered for

the dynamic resolution of calls made statically through the base-method R2 foo(A&,

B&).

Taking the above into account, we propose that the dynamic linker fills in the

dispatch table of every base-method independently. This results in the following

Table VIII.

Table VIII. D1 and D2 loaded together

AA1 A B AB2 B BA3 A B

A AA1 AB2 A AB2

B BA3 BB1 B AB2 B BA3 BA3

105

It looks as if the dispatch table for the base-method R1 foo(A&,A&) now violates

covariant consistency, but in reality it does not because all the return types in it are

cast back through thunks to R1, which is the type statically expected at the call site.

As can be seen, this logic may result in different functions being called for the

same type tuple depending on the base-methods seen at the call site. We note,

however, that the call is always made to the most specialized overrider that is type-

safe for the caller.

IV.D.3. Pure Open-Methods

There are no abstract (pure virtual) open-methods; that is, every open-method must

be defined. Consider a (dynamic) library D1 that introduces a new class and a second

(dynamic) library D2 that defines a new abstract open-method. When both libraries

are (dynamically) linked together the presence of an overrider for the class in D1 can

not be guaranteed. The alternative would be runtime “method not defined” errors

(reported as exceptions), but that solution would be inconsistent with the rest of C++

and would limit the use of open-methods in embedded systems.

IV.E. Relation to Orthogonal Features

In this section, we discuss the relationship of open-methods to other language features.

IV.E.1. Namespace

Virtual functions have a class scope and can only be overridden in the derived classes.

Open-methods do not have such a scope by default, so the question arises when should

an open-method be considered an overrider and when just a different open-method?

Let’s look at the following example:

namespace X

106

{
class A {};
void bar(virtual A&); // base method

class B : A {};
void bar(virtual B&); // (1)
}
namespace Z
{
void bar(virtual B&); // (2)
}
namespace Y
{
class D : X::A {};
void bar(virtual D&); // (3)
}
class C : X::A {};
void bar(virtual C&); // (4)

In the presented implementation, an overrider has to be declared in the same

namespace as its base-method (1). Open-methods with the same name and com-

patible parameter types, defined in different namespaces would not be considered

overriders. The major benefit of this approach is that it is easy to understand and

implement. Unfortunately such semantics are not unifiable with overrider declara-

tions of virtual function calls, where derived classes can be declared in a different

namespace. using declarations present a potential work around to these limitations.

An alternative would be to let overriders be declared in any namespace (1,2,3,4).

It is easy to understand, but defeats the purpose of namespaces that were introduced

to better structure the code and avoid name-clashes among independently developed

modules.

Another alternative may consider an open-method to be an overrider, if its base-

method is defined in the same scope or in the scope of their argument types and

their base classes. In this scenario (1, 3, 4) would override; (2) would not. Among

its advantages is that it closely resembles argument dependent lookup. It would also

107

work for virtual functions. Its downside, however, is that it is harder to comprehend.

IV.E.2. Access Privileges

Open-methods are generic freestanding functions, which do not have the access priv-

ileges of member functions. If an open-method needs access to non-public members

of a class, that class must declare it a particular open-method as a friend.

IV.E.3. Smart Pointers

In C++, programmers use smart pointers, such as auto ptr (in current C++) as well as

shared ptr and weak ptr (in Boost [26] and C++0x [25]) for resource management.

The use of smart pointers together with open-methods is no different from their use

with (virtual) member functions. For example:

struct A { virtual ~A(); };
struct B : A {};
void foo(virtual A&);

void bar(shared ptr<A> ptr)
{

foo(∗ptr);
}

Defining open-methods directly on smart pointers is not possible. In the following

example, (1) yields an error, as ptr1 is neither a reference nor a pointer type. The

declaration of (2) is an error, because shared ptr is not a polymorphic object (it

does not define any virtual function). Even when shared ptr were polymorphic, the

open-method declaration would be meaningless. A shared ptr would not be in

an inheritance relationship to shared ptr<A>, thus the compiler would not recognize

foo(virtual shared ptr&) as an overrider.

void foo(virtual shared ptr<A> ptr1); // (1) error
void foo(virtual shared ptr<A>& ptr2); // (2) error

108

IV.F. Implementation

We have implemented open-methods as described in §IV.C by modifying the EDG

compiler front-end [69]. This includes dispatch table generation and thunk gener-

ation for multiple inheritance and covariant return. To reduce the dispatch table

size, we have also implemented the dispatch table compression techniques presented

in [12]. Our current implementation does not support dynamically linked libraries

and detection of late ambiguities.

IV.F.1. Changes to Compiler and Linker

Our mechanism extends ideas presented in [71, 195] as to the compiler and linker

model. We adopted the multi-method syntax proposed in [170], which in turn was

inspired by an earlier idea by Doug Lea (see [170, §13.8]). One or more parameters

of a non-static freestanding function can be specified to be virtual. Overloading

functions based only on the virtual specifier is not allowed.

A virtual argument must be a reference or pointer to a polymorphic class (that

is, a class containing at least one virtual function). For example:

struct A { virtual ~A(); };
void print (virtual A&); // ok
void print (int , virtual A∗); // ok
void print (int , virtual const A&); // ok

void dump(virtual A); // compiler error
void dump(virtual int); // compiler error

For each translation unit, the EDG compiler lowers the high level abstractions

in C++ to equivalent code in C. We added an implementation that lowers open-

method calls to C according to the object-model presented in §IV.F.2. In addition,

the compiler puts out an open-method description (OMD) file that stores the data

needed to generate the runtime data structure discussed in §IV.F.2. This includes the

109

names of all classes, their inheritance relationships, and the kind of inheritance. Open-

methods are represented by name, return type, and their parameter list. Finally, the

OMD-file also contains definitions of all user-defined types that appear in signatures

of open-methods (both as virtual and regular parameters). These definitions are

necessary to generate class definitions for arguments to open-methods that are passed

by value.

The pre-linker uses Coco/R [196] to parse the OMD-files. Then, the pre-linker

synthesizes the OMD-data, associates all overriders with their base-methods, gener-

ates dispatch tables, issues link-errors for ambiguities, determines the indices neces-

sary to access the open-method, and initializes the data structures described in §IV.F.2.

When the call of an overrider requires adjustments of the this-pointers (as is

sometimes needed in multiple inheritance hierarchies), the pre-linker creates thunks

and makes the dispatch table entries refer to them instead. During dispatch table

synthesis, the linker will report errors for all argument combinations that do not

have a unique best overrider. The output of the pre-linking stage is a C-source file

containing the missing definitions. If the linker generates a library, the pre-linker also

puts out a merged OMD-file.

IV.F.2. Changes to the Object Model

We augment the IA-64 C++ object model [98] by four elements to support constant

time dispatching of open-methods. First, for each base-method there will be a dis-

patch table containing the function addresses. Second, the v-table of each sub-object

contains an additional pointer to the open-method table (om-table). Finally, the in-

dices used for the open-method-table offsets are stored as global variables.

The Figures 11 and 12 show the layout of objects, v-tables, om-tables and

dispatch-tables for repeated and virtual inheritance. Our extensions to the object-

110

Fig. 11. Object model for repeated inheritance

model are shown with gray background. From left to right the elements in each

diagram represent the object, v-table, om-table, and dispatch table(s) for the class

hierarchy in §IV.C.3. From top to the bottom, the objects are of type A, B, C, and

D respectively.

An open-method can be declared after the declarations of the classes used in its

virtual parameters. Therefore, the compiler cannot reserve v-table entries to store

the data related to open-method dispatch immediately in a class’s virtual function

table. Hence, we always extend every v-table by one pointer referencing the om-table,

which can be laid down later by the pre-linker.

The om-table reserves one position for each virtual parameter of each base-

method, where objects of this type can be passed as arguments. This position stores

an index into the corresponding dimension of the dispatch table. Since the size of

111

Fig. 12. Object model for virtual inheritance

the om-tables is not known at compile time, our technique relies on a literal for each

open-method and virtual parameter position (called foo 1st, foo 2nd in Figures 11

and 12 that determines the offset within the om-tables.

Note that these figures depict our actual implementation, where entries for first

argument positions already resolve one dimension of the table lookup. Entries for all

other argument positions store the byte offset within the table.

In the presence of multiple-inheritance, a this-pointer shift might be required to

pass the object correctly. In this case, we replace the address of the overrider by an

address of a thunk that takes care of correctly adjusting the this-pointer. As described

in §IV.C.3.b in case of repeated inheritance, different bases can show different dispatch

behavior depending on the sub-object to which the this-pointer refers. As a result,

112

different bases may point to different om-tables. In case of virtual inheritance, the

open-method dispatch entries are only stored through the types mentioned in the base-

method. Hence, in the virtual inheritance case, all open-method calls are dispatched

through the virtual base type.

IV.F.3. Alternative Approaches

We considered a few other design alternatives and explored their trade-offs in exten-

sibility and performance.

IV.F.3.a. Multi-Methods

Unlike open-methods, multi-methods require the base-method to be declared in the

class definition of its virtual parameters. This allows the offset within the v-table be

known at compile time, which saves two indirections per argument of a function call

(one for the om-table, and one to read the index within the om-table). For a call

with k virtual arguments, open-methods need 4k+ 1, while multi-methods need only

2k + 1 memory references to dispatch a call. The downside of multi-methods is that

existing classes cannot easily be extended with dynamically dispatched functions.

With the restriction of in-class declarations imposed by multi-methods it seems

logical to declare a multi-method either as a member function or as a friend non-

member function. Consider:

class Matrix
{
// multi−method declaration as a non−member function
friend Matrix& operator+(virtual const Matrix& lhs, virtual const Matrix& rhs);

// equivalent declaration as a member function
virtual Matrix& operator∗(virtual const Matrix&);
};

We implemented only the non-member version of multi-methods. The member

113

version can be implemented with exactly the same techniques. However, in many

cases it is harder to write code that uses the member version because an overrider

must be a member of (only) one class – and the main rationale for multi-methods is

to elegantly deal with combinations of classes. Even the non-member (friend) version

is hard to use.

By requiring a declaration to be present in a class, we limit the polymorphic op-

erations to those that the class designer thought of. That requires too much foresight

of the class designer or leads to unstable classes (classes that keep having multi-

methods added). Such problems are well-known in languages relying on member

functions. Open-methods provide an abstraction mechanism that solves such prob-

lems by separating operations from classes.

IV.F.3.b. Chinese Remainders

As we saw in §IV.F.2, support of open-methods required an extra indirection via

open-method table to get index of the class in appropriate argument position. This

extra indirection was needed because open-methods are not bound to the class and

as a result, we do not know how many of them a class may have, therefore we cannot

reserve entries in the v-table for them. In this section, we present an “ideal” scheme

for implementing open-methods, inspired by ideas presented in [80]. The proposed

scheme circumvents the necessity for open-method tables by moving all the necessary

information from the class to the dispatch table.

Suppose that for every multi-method f there is a function If : T ×N → N such

that for any type t ∈ T (where T is a domain of all types) and argument position

n ∈ N it returns index of type t in the nth dimension of the f ’s dispatch table.

If such function is reasonably fast (preferably constant time) and its range is small

(preferably from zero to the maximum number of types that can be used in any

114

argument position) then we can efficiently implement multiple dispatch by properly

arranging rows and columns according to the indices returned by If . As in [80], we

use the Chinese Remainder theorem [54] to generate function If .

Chinese Remainder Theorem

Let m1, · · · ,mk be integers with gcd(mi,mj) = 1 whenever i 6= j. Let m be

the product m = m1m2 · · ·mk. Let a1, · · · , ak be integers. Consider the system of

congruences:

x ≡ a1(mod m1)

x ≡ a2(mod m2)

· · · ,

x ≡ ak(mod mk)

Then there exists exactly one x ∈ Zm satisfying this system.

Since we may have different class hierarchies in different argument positions, we

have to consider each argument position separately. Assuming that there can be q

different types ti1, ti2, · · · , tiq in an argument position i, we may assign a different

prime number mij : j = 1, q to each of them and then according to the Chinese

Remainder Theorem find a number xi that satisfies the above equation. Storing

xi for each dimension (argument position) of dispatch table, we will come to the

dispatching algorithm shown in Algorithm 3. Since k is known at compile time, no

actual iteration is required and the algorithm takes constant time.

In this scenario, every class (or more specifically every argument position i where

this class may appear as virtual argument) will have a prime number mi assigned to it,

while the dispatch table will have a number xi computed through Chinese Remainders,

associated with each of its dimensions. The result of xi mod mi gives us the column

within the appropriate dimension of dispatch table.

115

This dispatching technique has the nice property that it does not need any mod-

ifications of the v-table in order to introduce a new open-method on the class. Once

allocated, prime numbers can be reused for any number of open-methods defined on

the class regardless of the argument position in which a type is used. After dispatch

table allocation, we simply have to compute the number xi for each of the argument

positions. Extending such a table, that may be required after introduction of a new

class in the hierarchy, is also simple: allocate new rows and columns and recompute

xi taking prime numbers of newly added classes into account.

We demonstrate the approach with an example. Consider the following class

hierarchy and an open-method foo defined on it:

class A {}; // Assigned prime 2
class B : public A {}; // Assigned prime 5
class C : public A {}; // Assigned prime 3
class D : public B, public C {}; // Assigned prime 13 for D/B and 7 for D/C
class E : public D {}; // Assigned prime 17 for E/B and 19 for E/C sub−object

void foo(virtual A&, virtual A&);
void foo(virtual B&, virtual B&);
void foo(virtual B&, virtual C&);
void foo(virtual C&, virtual B&);
void foo(virtual C&, virtual C&);
void foo(virtual E&, virtual E&);

Table IX depicts the resulting dispatch table. Dispatching a call will then look like

DTfoo[XDTfoo
mod P (a1), XDTfoo

mod P (a2)](a1, a2). Having pointers to the actual ar-

guments of a call, we can look up the v-tables of those arguments and the prime

numbers associated with their types. Suppose that the prime number associated

with the first argument is 11, while the prime number associated with the second

argument is 3. To get the row number inside the dispatch table associated with the

first argument, we compute the remainder of dividing 1062506 by 11, which is 5. Row

number 5 corresponds to the B sub-object of an object with dynamic type E. Similarly

we get the column associated with the type of the second argument through finding

116

T
ab

le
IX

.
D

is
p
at

ch
ta

b
le

w
it

h
re

p
ea

te
d

b
as

e
cl

as
se

s

A
2

B
5

C
3

D
/
B

1
3

D
/
C

7
E

/
B

1
1

E
/
C

1
7

A
2

A
A

A
A

A
A

A
A

A
A

A
A

A
A

x
≡

0
(
m

o
d

2
)

B
5

A
A

B
B

B
C

B
B

B
C

B
B

B
C

x
≡

1
(
m

o
d

5
)

C
3

A
A

C
B

C
C

C
B

C
C

C
B

C
C

x
≡

2
(
m

o
d

3
)

D
/
B

1
3

A
A

B
B

B
C

B
B

B
C

B
B

B
C

x
≡

3
(
m

o
d

1
3
)

D
/
C

7
A

A
C

B
C

C
C

B
C

C
C

B
C

C
x
≡

4
(
m

o
d

7
)

E
/
B

1
1

A
A

B
B

B
C

B
B

B
C

E
E

E
E

x
≡

5
(
m

o
d

1
1
)

E
/
C

1
7

A
A

C
B

C
C

C
B

C
C

E
E

E
E

x
≡

6
(
m

o
d

1
7
)

x
≡

0
(
m

o
d

2
)

x
≡

1
(
m

o
d

5
)

x
≡

2
(
m

o
d

3
)

x
≡

3
(
m

o
d

1
3
)

x
≡

4
(
m

o
d

7
)

x
≡

5
(
m

o
d

1
1
)

x
≡

6
(
m

o
d

1
7
)

x
=

1
0
6
2
5
0
6

117

the remainder of dividing 1062506 by 3, which is 2. Column number 2 corresponds

to type C, which means that the dynamic type of the second argument is C. The

number 1062506 is associated with the dispatch table, through which the call is being

dispatched. To find the overrider that will be handling the call, we simply look up

an address of the function that is stored at the intersection of the fifth row and the

second column, which is foo(B&,C&).

Despite its elegance, this approach is rather theoretical because it is hard to

use for large class hierarchies. The reason is that we need to assign different prime

numbers to each class and perform computations on numbers that are bound by the

product of these primes. The product of only the first nine primes fits into a 32-bit

integer and the first 15 primes into a 64-bit integer. Table compression techniques [12]

or the use of minimal perfect hash functions [54] instead, can help overcome the

problem.

In response to our paper [145], Gabor Greif sent us his unpublished notes on a

similar use of Chinese Remainders for implementing multiple dispatch [85] in Dylan.

118

Algorithm 1 Dispatch Table Generation

T ← topological sort(Xf) // Topologically sort according to <P

S ← reverse(T) // Reverse the order to have the least specific first

for all x ∈ S do

if x ∈ Yf then

DTf [x]← x // Overriders themselves are the best matches for their arguments

else

ancestors = β(x) // Get type-tuples of immediate ancestors

most specific = {DTf [extract any(ancestors)]}

while ¬ empty(ancestors) do

a← extract any(ancestors)

dominated← find dominated(a,most specific)

if ¬ dominated then

// When none of the overriders was more specific

most specific← most specific ∪ {DTf [a]}

end if

end while

if |most specific| = 1 then

// There was a unique most specific overrider, use it

DTf [x]← y, where most specific = {y}

else

Error: Unable to find unique best overrider among most specific

end if

end if

end for

119

Algorithm 2 find dominated(a, most specific)

for e ∈ most specific do

if DTf [a] <P DTf [e] then

// This ancestor’s overrider is more specific

most specific← most specific− {e}

else if DTf [e] <P DTf [a] then

// Overrider in the most specific set is more specific

dominated← true

return false

else if Rf (DTf [a]) <: Rf (DTf [e]) then

// Incomparable by arguments, but more specific return type

most specific← most specific− {e}

else if Rf (DTf [e]) <: Rf (DTf [a]) then

// Incomparable by arguments, but ancestor’s return type is less specific

return false

end if

end for

return true

Algorithm 3 Dispatching with Chinese Remainders

for all argument positions i of a multi-method f do

ni = xi mod mi

end for

call D[n1, · · · , nk] with arguments provided

120

CHAPTER V

COMPARISON WITH WORKAROUND TECHNIQUES

The previous chapter introduced an open-method language extension. In this chapter,

compare source code for C++ with open-methods and source code for C++ that makes

use of alternative implementation techniques.

We study the use of open-methods together with the runtime concept idiom.

Open multi-methods are a language feature at the intersection of object-oriented pro-

gramming and generic programming §IV.C.1. Runtime concepts, developed by Sean

Parent and Mat Marcus at Adobe Systems, augment generic programming with a pro-

gramming model that supports dynamic polymorphism. We utilize the open-methods

to provide runtime dispatch to algorithm implementations for runtime concepts. We

compare the open-method implementation with an implementation in ISO C++.

Then we utilize open-methods for the implementation of image format conversion

and the traversal of a compiler AST. We compare the implementations with a visitor

pattern based counterpart. We conclude this chapter by comparing run time and

space implications of different implementation methods.

V.A. Background on Runtime Concepts

A key benefit of generic programming is its support for producing modules with

clean separation. In particular, generic algorithms are written to work with a wide

variety of types without requiring modifications to them. The Runtime concept idiom

extends this support by allowing unmodified concrete types to behave in a runtime

polymorphic manner. In this dissertation, we describe one implementation of the

runtime concept idiom, in the domain of the C++ standard template library (STL).

We complement the runtime concept idiom with an algorithm library that considers

121

both type and concept information to maximize performance when selecting algorithm

implementations. We present two implementations, one in ISO C++ and one using

an experimental language extension. We use our implementations to describe and

measure the performance of runtime-polymorphic analogs of several STL algorithms.

The tests demonstrate the effects of different compile-time vs. run-time algorithm

selection choices.

V.A.1. Introduction

ISO C++ [97] supports multiple programming paradigms [174], notably object-oriented

programming and generic programming. Object-oriented techniques are used when

runtime polymorphic behavior is desired. When runtime polymorphism is not re-

quired, generic programming is used, as it offers non-intrusive, high performance

compile-time polymorphism; examples include the C++ Standard Template Library

(STL) [15], the Boost Libraries [26], Blitz++ [187], and STAPL [13].

Recent research has explored the possibility of a programming model that re-

tains the advantages of generic programming, while borrowing elements from object-

oriented programming, in order to support types to be used in a runtime-polymorphic

manner. Parent [136] introduces the notion of non-intrusive value-based runtime-

polymorphism, which we will refer to as the runtime concept idiom. Marcus et

al. [114, 4], and Parent [137] extend this idea, presenting a library that encapsu-

lates common tasks involved in the creation of efficient runtime concepts. Järvi et

al. [101] discuss generic polymorphism in the context of library adaptation.

A key idea in generic programming is the notion of a concept. A concept [83] is a

set of syntactic and semantic requirements on types. Syntactic requirements stipulate

the presence of operations and associated types. In the runtime concept idiom, a class

C is used to model these syntactic requirements as operations. The binding from C to

122

a particular concrete type T is delayed until runtime. Any type T that syntactically

satisfies a concept’s requirements can be used with code that is written in terms of

the runtime concept.

In this section, we apply these principles to develop a runtime-polymorphic ver-

sion of STL sequence containers and their associated iterators. Runtime concepts

allow the definition of functions that operate on a variety of container types.

Consider a traditional generic function expressed using C++ templates:

// conventional template code
template <class Iterator>
Iterator
random elem(Iterator begin, Iterator end) {
typename Iterator::difference type dist = distance(begin, end);
return advance(begin, rand() % dist);
}
// ...
int elem = ∗random elem(v.begin(), v.end()); // v is a vector of int

Objects of any type that meet the iterator requirement can be used as argu-

ments to random elem. However, those requirements cannot be naturally expressed

in C++03, (though they can in C++ with concepts [27]), and the complete function

definition is needed for type checking and code generation. The resulting code is very

efficient, but this style of generic programming does not lend itself to certain styles

of software development (e.g., those relying on dynamic libraries).

We can write essentially the same code using the runtime concept idiom (the

classes of the runtime concept idiom and their implementation are discussed in §V.A.3):

// with runtime concept idiom
wrapper forward<int>
random elem(wrapper forward<int> begin, wrapper forward<int> end) {

wrapper forward<int>::difference type dist = distance(begin, end);
return advance(begin, rand() % dist);
}
// ...
int elem = ∗random elem(v.begin(), v.end()); // v is a vector of int

Here the binding between the iterator type and the function is handled at runtime

123

and we can compile a use of random elem with only the declarations of random elem

available:

// with runtime concept idiom:
wrapper forward<int>
random elem(wrapper forward<int> begin, wrapper forward<int> end);
// ...
int elem = ∗random elem(v.begin(), v.end()); // v is a vector of int

By using runtime concepts, function implementations (e.g., random elem) are

isolated from client code. The parameter type wrapper forward subsumes all types

that model the concept forward-iterator. The implementation can be explicitly in-

stantiated elsewhere for known element types, and need not be available to callers.

This reduced code exposure in header files makes runtime concepts suitable for

(dynamically linked) libraries and when source code cannot be shared. However,

the use of runtime concepts comes at a cost. The function random elem is written

in terms of the concept forward-iterator. The runtime complexity of distance and

advance is O(n) for forward-iterators, while it is constant time for random access

iterators. Passing iterators of vector<int> as arguments would incur unnecessary

runtime overhead.

When using STL iterators directly, the compiler checks that two iterators have

the same type (though it does not validate that two iterators belong to the same

container instance). As a consequence of subsuming iterators from various data struc-

tures under a single runtime concept, type checking that two iterators have the same

concrete type is postponed until run time.

V.A.2. Generic Programming

The ideal for generic programming is to represent code at the highest level of ab-

straction without loss of efficiency in both actual execution speed and resource usage

compared to the best code written through any other means. The general process to

124

achieve this is known as lifting, a process of abstraction where the types used within a

concrete algorithm are replaced by the semantic requirements of those types necessary

for the algorithm to perform.

Semantic Requirement: Types must satisfy these requirements in order to work

properly with a generic algorithm. Semantic requirements are stated in tables, in

documentation, and may at times be asserted within the code. Checking types against

arbitrary semantic requirements is in general undecidable. Instead, compilers for

current C++ check for the presence of syntactic constructs, which are assumed to

meet the semantic requirements. For example, an implementation of operator= is

expected make a copy.

Concept: Dealing with individual semantic requirements would be unmanage-

able for real code. However, sets of requirements can often be clustered into natural

groups, known as concepts. Although any collection of requirements may define a

concept, only concepts which enable new classes of algorithms are interesting.

Model: Any type that satisfies all specified requirements of a concept is said to

be a model of that concept.

Generic Algorithm: A generic algorithm is a derivative of a family of effi-

cient algorithms, whose implementation is independent from concrete underlying data

structures. The requirements that an algorithm imposes on a data structure can be

grouped into concepts. An example that is part of the STL is find and the require-

ment on the template argument is to model a forward-iterator.

Concept Refinement: A concept Cr that adds requirements to another concept

C0 is a concept refinement. The number of types that satisfy Cr is less or equal to

the number of types that satisfy C0. The number of algorithms that can be directly

expressed with Cr is greater or equal than the number of algorithms expressed with

C0. For example, constant time random access, a requirement added by the concept

125

randomaccess-iterator, enables the algorithm sort.

Algorithm Refinement: Parallel to concept refinements, an algorithm can be

refined to exploit the stronger concept requirements and achieve better space- and/or

runtime-efficiency. For example, the complexity of reverse for bidirectional-iterator

is O(n), while it is O(n lg n) for forward-iterator (assuming less than O(n) memory

usage).

Regularity: Dehnert and Stepanov [59] define regularity based on the semantics

of built-in types, their operators, the complexity requirements on the operators, and

consistency conditions that a sequence of operations has to meet. Regularity is based

on value-semantics and requires operations to construct, destruct, assign, swap, and

equality-compare two instances of the same type. This is sufficient for a number

of STL data structures and algorithms, including vector, queue, reverse, find.

A stronger definition adds operations to determine a total order, which enables the

use of STL’s map, set, sort. Programmers’ likely familiarity with built-in types

makes the notion of regularity important, because code written with built-in types in

mind (e.g., STL data structures) will work equally well for regular user defined types.

Consequently, conformance with regular semantics reduces the need for specialized

and customized implementations.

V.A.2.a. Standard Template Library

The C++ STL provides implementations of efficient algorithms and data structures.

The links between them are called iterators, which resemble pointers to elements

plus operations that move this pointer to other elements in the container. Each data

structure provides its own iterator implementation. The iterators can be grouped

according to the access capabilities of their respective data structure. STL defines

five iterator concepts: input iterator (for data sources), output iterator (for data

126

sinks), forward iterator (for sequential and repeated access), bidirectional iterator,

and random access iterator.

Algorithms are defined in terms of iterator concepts. At compile time the com-

piler statically selects the most suitable algorithm for a concrete iterator type. Data

structures and algorithms are coupled through iterators. Instead of having data

structures specific iterators, STL classifies them according to data access capabilities

into only five categories. This abstraction simplifies programming (programmers deal

with fewer categories), reduces the coupling between components (algorithms and

data structures are independent), and improves code maintainability. STL consists of

about 60 algorithms and 12 data structures [174]. The non-generic equivalent would

be 720 specific algorithms. Most algorithms, such as merge, operate on ranges. A

range consists of a pair of iterators that delimit a sequence of elements. The first

iterator points to the first element in the sequence, the second to the position one

element past the end of the sequence. A common access pattern is to iterate through

the range until the first and second iterator compare equal. Thus, 720 can be consid-

ered a conservative estimate because it ignores algorithms that operate on multiple

ranges.

V.A.3. Runtime Concepts for STL Iterators

This section presents our implementation of the runtime concept idiom for iterators

in C++03. For a general treatment of the runtime concept idiom, along with its

library support and optimizations we refer the reader to Marcus et al. [114, 4]. We

extend the external polymorphism pattern [47] with a regular wrapper. The result

is a three layered architecture: the concept layer, the model layer, and the wrapper

layer. We illustrate the implementation of these classes and their interaction based

on the concept forward iterator and its refinement bidirectional iterator. Each of the

127

layers is parameterizable with a value-type and a reference-type. We omit the latter

in our discussion.

V.A.3.a. Concept Layer

The concept layer defines the runtime concept interfaces - abstract base classes with-

out any data. Each of these interfaces defines a set of function signatures that reflect

the concept requirements. The following code snippet shows parts of the forward-

iterator class.

template <class ValueType>
struct concept forward {
virtual void next() = 0; // for operator++
virtual bool equals(const concept forward& rhs) const = 0; // for operator==
virtual concept forward& clone() const = 0; // for copy ctor, operator=
virtual ValueType& deref() const = 0; // deref operator∗
// ...
};

For operators that have a prefix and a postfix version (e.g., operator++), the

concept layer contains only one member function declaration (e.g., next), which re-

turns void. The wrapper layer (§V.A.3.c) implements the prefix and postfix operator

in terms of this function and returns the appropriate result.

Refinements of a runtime concept inherit from another runtime concept interface

and add new operations or refine inherited signatures with covariant return types.

template <class ValueType>
struct concept bidirectional : concept forward<ValueType> {
virtual void prev() = 0; // for operator−−
virtual concept bidirectional& clone() const = 0; // overrider with covariant result
// ...
};

128

V.A.3.b. Model Layer

The model layer defines model classes that inherit from the runtime concept interfaces.

Models are parametrized classes, where the first template argument determines the

concrete iterator type and the second template argument corresponds to the concept

interface that this model will implement. For an iterator of list<int>, these would

be list<int>::iterator and concept bidirectional<int> respectively. At the

root of the model-hierarchy is the class model base that holds a copy of the concrete

iterator (member variable it).

template <class Iterator, class IterConcept>
struct model base : IterConcept { // connect implementation type to interface type

Iterator it;
};

The class model base together with its two template arguments Iterator and

IterConcept already determine the model refinement.

The implementation of the pure virtual functions defined in the concept inter-

faces is accomplished by mixin techniques [165] and class hierarchy linearization [177].

For each runtime concept interface there exists a model class that implements the cor-

responding pure virtual functions. For example, model bidirectional implements

the pure virtual functions defined in concept bidirectional. The model classes

(directly or indirectly) derive from model base and linearly mixin their function im-

plementations, which forward the calls to the concrete iterator it.

template <class Iterator, class IterConcept>
struct model forward : model base<Iterator,IterConcept> {

IterConcept& clone();

bool equals(const concept forward& rhs) const {
assert(typeid(∗this) == typeid(rhs));
return this−>it == static cast<const model forward&>(rhs).it;
}
/∗ . . . ∗/
};
template <class Iterator, class IterConcept>

129

struct model bidirectional : model forward<Iterator,IterConcept> {
void prev();
/∗ . . . ∗/
};

The model classes require the same template arguments as model base. This is

necessary because, for example, model forward could be mixed in with a

model bidirectional to implement the functions defined by concept forward. In

this case, model forward would indirectly derive from concept bidirectional.

Operations with two polymorphic arguments (e.g., equals) require both argu-

ments to have the same dynamic type. Since C++ does not allow covariant arguments,

this restrictions cannot be modeled statically (i.e., equals takes a concept forward),

but the same type requirement allows the argument be cast to the dynamic type of the

receiver object. This limits the use of the equality operator to comparisons with the

same underlying iterator type; comparisons of an iterator with its const-counterpart

are currently not supported, but could be encoded with true multi parametric func-

tions (see §V.A.6, double dispatch [30], or multi-method libraries [9, 159]).

The factory-function generate model selects a model refinement based on the

concept of a concrete iterator. Its use guarantees the existence of exactly one runtime

model type for each concrete iterator type. This allows operations with two runtime-

concepts as arguments to rely on the same type requirement.

template<class Iterator>
typename map iteratortag to model<Iterator>::type∗
generate model(const Iterator& it) {
typedef typename map iteratortag to model<Iterator>::type iterator wrapper type;

return new iterator wrapper type(it);
}

The template meta function map iteratortag to model uses the iterator cate-

gory to generate the proper model type. For example, for a

list<int>::iterator, the generated class would be

130

model bidirectional<list<int>::iterator, concept bidirectional<int> >.

Then generate model constructs an object of this type on the heap, and returns

its address.

V.A.3.c. Wrapper Layer

The wrapper layer defines regular classes that wrap a concept layer object and manage

its lifetime.

template <class ValueType>
struct wrapper forward {

concept forward<ValueType>∗ iterator m;

// Constructor that takes any iterator
template <class ConcreteIterator>
wrapper forward<ValueType>(const ConcreteIterator& iter)

: iterator m(generate model(iter)) {}
wrapper forward<ValueType>(const wrapper forward<ValueType>& iter)

: iterator m(iter.iterator m−>clone()) {}
// Postfix operator implemented in terms of concept forward::next
wrapper forward<ValueType> operator++(int) {

wrapper forward<ValueType> tmp(∗this);
this−>iterator m−>next();
return tmp;
}
/∗ . . . ∗/
};

It implements operations that guarantee regular semantics (constructor, destruc-

tor, etc.) and other operations required by the STL concept. Here, the implementa-

tions of the copy constructor and the assignment operator makes use of the function

clone.

Fig. 13 summarizes the interaction of the different layers of the runtime concept

idiom:

The wrapper class is the placeholder for a concrete iterator type and holds a

pointer to an interface. The model base inherits from this interface and holds a

131

Fig. 13. Layers of the runtime concept idiom

copy of a concrete iterator (e.g., std::vector<int>::iterator), while the model

classes implement the pure virtual functions. A member function call, for example

operator++, invokes a virtual function of the concept interface (next), implemented

by model forward, which forwards the call to the operator++ of the concrete iterator.

The functions in the wrapper class, and the call to the concrete iterator can be

inlined. Each invocation of a wrapper function incurs the overhead of at most one

virtual function call. Swap and move can be implemented by manipulating the concept

interface pointer of the wrapper class [114].

V.A.4. The Algorithms Library

In this section, we address performance problems that arise in the presence of type

erasure [1]. First, virtual functions incur runtime overhead and impede inlining.

Second, the functions distance and advance in the body of random elem are selected

at compile time according to the static type of the wrapper class which can lead

to less than optimal runtime complexity. A dispatch solution (algorithm library)

that postpones the function selection until runtime, when dynamic information about

the wrapped iterator type and its concept is available, can do better (as the C++98

132

STL does through static resolution). We outline the design ideals and discuss two

implementations: one in ISO C++ and one using an experimental language feature,

open multi-methods [145].

V.A.4.a. Design Goals

Practical solutions to the dispatch problem should address the following issues:

Extensibility: the runtime concept idiom allows for separate compilation of li-

brary code and user code. Therefore, the library implementation cannot make any

assumption about specific container and iterator types in the user code. The algo-

rithm library enables user code to optimize the runtime of the library functions for

the data structures it uses.

Applicable to algorithms operating on multiple ranges: for STL algorithms that

operate on a single range (e.g., find, reverse, sort, etc.) the best function can be

selected according to the dynamic type of a single argument (the begin of a range); we

can assume that the end of the range has the same dynamic type. Some algorithms

operate on two ranges (e.g., merge, set union, transform, etc.) and require the

dispatch mechanism to be sensitive in respect to more than one argument type to

achieve optimal performance. Any implementation that supports dispatch according

to more than one dynamic argument, requires some policy to handle ambiguities.

Conservative in executable size: the executable should not contain code for al-

gorithms that are not needed. This means that our example library for random elem

contains algorithm instances only for advance and distance but not for any other

STL algorithm.

Independence from runtime concept classes: providing new algorithms and better

algorithm instances has to be achievable without repeated modification of the runtime

concept classes.

133

Usability: From the user perspective, programming with the algorithm library

should be similar to programming with the STL and providing algorithms and algo-

rithm instances should be straightforward.

Implementable in ISO C++: a practical solution should be implementable in

current C++ and not require any language or compiler specific extension. From a

research perspective, however, we are interested in finding generally usable abstraction

mechanisms that improve the design and implementation.

Performance: to be usable independently from the size of the data set, the

runtime overhead for making a dispatch decision should be as small as possible.

Particularly, the support for multiple arguments and extensibility is so important

for generality and performance that the designers of compile time concepts for C++0x

decided to postpone checking of specialized algorithms for some potential ambiguities

to instantiation time [100].

V.A.5. Implementation in ISO C++

Our implementation prototypes an algorithms library for several STL algorithms.

Each function in the library originates from an algorithm instantiation with one of

the iterator wrappers or a concrete iterator. By default, the library contains an

instance for the weakest concept an algorithm supports. For example, the default

entry for lower bound would be instantiated with wrapper forward. These default

instances are meant to serve as fallback-implementations. To improve performance,

the system integrator or even a (dynamically loaded) library can add more specialized

algorithm instances. This is essential to preserve the algorithmic efficiency of key STL

algorithms. The default implementation and the added instances form an algorithm

family. Each algorithm family is defined in terms of an existing STL algorithm and

the iterator-value type (e.g., algolib::advance<int>).

134

To provide for modular extensibility, we decouple the algorithm library from

static dispatch structures (i.e., enumerations, switch statements, visitor classes, type-

lists, variant types). This is what visitor based implementations and many C++ multi-

method libraries depend on (e.g., Loki library [9], Shopyrin’s deferred recursive mech-

anism [159], doublecpp [30], GIL [33]). Other open method implementations depend

on language extensions and require preprocessor/compiler support (e.g., Cmm [166],

Omm [145]) to extract the information that is necessary for an efficient implemen-

tation. Instead, our implementation relies on runtime type information (RTTI) and

data embedded in the concept and model classes.

The mechanics of our implementation rest on three core components:

• a class hierarchy traversal that returns the typename of the base class for a

given typename (or class).

• an associative data structure that stores functions and the RTTI information of

their runtime polymorphic argument.

• a lookup mechanism that uses the class hierarchy traversal to find the best

matching algorithm instance from the associative data structure.

To remain independent from specific compilers and their application binary inter-

face (ABI), we encode the refinement (inheritance) relationship by mapping a typeid

of a class to the typeid of its base class. In the context of the modeled iterator

hierarchy, the use of single inheritance suffices.

struct inheritance {
static std::map<const std::type info∗, const std::type info∗> bases;

inheritance(const std::type info& base, const std::type info& derived) {
bases[&derived] = &base;
}
};

135

To automatically keep track of the refinement relationships of all instantiated

runtime concept classes, we augment the class model base and all classes of the

concept layer (e.g., concept bidirectional), except the base (concept forward),

with a static data member inh. By making the constructor refer to inh we force

inh’s instantiation without incurring any runtime overhead because referencing inh

has no direct effect and can be optimized away.

template <class ValueType>
struct concept bidirectional : concept forward<ValueType> {
static inheritance inh;

concept bidirectional() { inh; } // triggers instantiation of inh
// . . .
};

inh’s constructor records the refinement relationship in the global mapping

inheritance::bases that we later use to query a class for its base.

// static member initialization
// inh’s constructor records the refinement relationship
template <class ValueType>
inheritance
concept bidirectional<ValueType>::inh(typeid(concept forward<ValueType>),

typeid(concept bidirectional<ValueType>));

Since a library developer is unaware of the specific data structures in user code,

it is at the discretion of the user to enhance the runtime by providing better algo-

rithm instances. This is supported by two functions that take the algorithm family

and an iterator type as argument. The first (add generic) instantiates a function

that rewraps the model into a more powerful wrapper class specified by the iterator

type and invokes the STL algorithm with it. The second, add specific generates

a function that peels off all runtime concept layers and invokes the STL algorithm

with the concrete iterator. The following sample code shows how to register a generic

implementation for wrapper randomaccess and a specific for list<int>::iterator.

Note that, the distinction by name of add generic and add specific is not neces-

136

sary, but choosing to do so makes the use of virtual functions inside of an algorithm

instance explicit.

// add generic implementation suitable for all random access iterators.
algolib::add generic<

algolib::advance<int>, // library name
wrapper randomaccess<int> // iterator−type

>();

// add specific implementation for std::list<int>.
algolib::add specific<

algolib::advance<int>, // library name
std::list<int>::iterator // iterator−type

>();

In addition, we provide library functions with names that match their STL coun-

terparts (e.g., distance). They look up and forward the call to the best matching

algorithm instance. These functions are defined in the same namespace as the wrap-

per classes. Together with argument dependent lookup (ADL) in C++, this allows

source code resemble code written with STL iterators. The following code snippet

shows a function that takes two iterator wrappers as arguments and calls the library

functions (i.e., distance, advance).

wrapper forward<int>
random elem(wrapper forward<int> begin, wrapper forward<int> end) {

wrapper forward<int>::difference type dist = distance(begin, end);
return advance(begin, rand() % dist);
}

At runtime, a library call selects the best applicable function present based on

the dynamic type of the model. Starting with the typeid of the actual iterator

model, it walks the typeids of the inheritance chain until an algorithm or the fallback

implementation is found. The following code snippet shows the lookup mechanism:

template <class A>
typename A::instance map::data type
lookup(typename A::dyn iterator type pack pack) {
typename A::instance map::iterator end = A::instances.end();

do {
// lookup algorithm instance for type tuple described by pack

137

typename A::instance map::iterator pos = A::instances.find(pack);
if (pos != end) return pos−>second;

// try with next type tuple in the poset
pack = next(pack);
} while (pack != A::fallback iterator pack);

return A::fallback instance; // return fallback, if no better instance is present
}

The template argument A is a data structure that describes the algorithm and

has the following dependent types defined:

• dyn iterator type pack is a type tuple that initially contains type ids of the

iterator models that are involved in the dynamic dispatch.

• instance map is the type of the associative data structure, which maps a

dyn iterator type packs to an algorithm instance.

In addition, A defines the following static data members:

• fallback iterator pack is a type tuple (of type dyn iterator type pack)

that identifies the concept classes of the fallback implementation.

• fallback instance is a pointer to the fallback instance.

The function next uses the stored inheritance relationships to generate a poset

of type tuples with the following ordering relation: a � b if for each component i of

the tuples the subclassing relationship ai <: bi, or ai = bi holds.

This ordering relation guarantees the lookup to find a most specific algorithm

instance, if one exists. Should multiple equally specific instances exist, one of them

is chosen depending on the implementation of next. When, like in the presented

algorithms, the selection depends on the dynamic type of a single parameter, next’s

order becomes total.

138

If random elem’s begin and end wrap the concrete type

std::list<int>::iterator, the lookup mechanism will find an algorithm instance

that peels off all runtime concept layers and calls std::advance with a std::list<int>

iterator. In case begin and end belong to a std::vector, the runtime model is re-

wrapped by a wrapper randomaccess iterator and

std::advance<wrapper randomaccess> is invoked.

Virtual function based design: Although the dispatch mechanism is semantically

equal to virtual function calls, we rejected alternative library designs that would

model algorithms as pure virtual functions declared in concept interfaces. This would

break the separation between concept requirements and algorithms. Providing a new

algorithm would require adding a new function signature to the concept interface,

thereby breaking binary compatibility with existing applications. In addition, such a

design would create a number of unused instantiated functions. For example, the class

concept forward would need virtual function declarations for all STL algorithms

that are defined for forward iterators (e.g., adjacent find, fill, equal range, etc.).

Consequently, the model classes would need to implement those functions regardless

whether a specific program uses them or not. Finally, extending a virtual function

based design towards multiple virtual arguments is complex when not all classes are

known beforehand.

Evaluation: The described library eliminates virtual function calls inside an algo-

rithm, when a matching algorithm instance is present. Its dispatch mechanism meets

the outlined design criteria except for performance and the capability to consider

more than one dynamic iterator type for dispatch decisions. The performance tests

presented in §V.A.7.b (i.e., for lower bound) indicate that the dispatch cost can be

significant. In particular, for small data sets the overhead of algorithm lookup can

139

outweigh the more efficient execution of the STL algorithm. Extending the dispatch

towards multiple arguments aggravates the situation. Even for optimized implementa-

tions, that flatten inheritance data and record uniquely best matching functions for a

given type tuple (as implemented in Smith’s Cmm [166]), Pirkelbauer et al. [145, 147]

report that a significant overhead remains.

Incorporating parts of the implementation outlined in [145, 147] into a ISO C++

based design of the algorithm library with the goal to improve performance is possible,

but raises other problems. For example, dispatch tables, which map a combination of

types to a function, need to be computed beforehand. Moreover, a library implemen-

tation cannot modify the object-model, thereby requiring an additional indirection

to map RTTI to indexes into the dispatch table.

Consequently, we argue that a practical solution to the multi-parametric dynamic

dispatch and performance problems would benefit from proper language support. A

design principle of C++ is to aim for language features that are general and address

a number of specific concerns in several domains [170]. Following these guidelines

we postulate a design based on an experimental language extension — open multi-

methods. Open multi-methods, allow for programming styles that mix elements from

object-oriented and functional programming [157] and object-oriented and generic

programming [147].

Open multi-methods address two fundamental problems in object-oriented soft-

ware design. First, they overcome dispatch problems where the choice of method

depends on the dynamic type of more than one argument. This is paralleled by

generic programming, where all arguments have equal weight during overload res-

olution. Second, extending classes, possibly defined in third party libraries, with

dynamically dispatched functions (virtual functions) is intrusive or requires provision

for the visitor pattern [79]. This often requires more foresight than class designers

140

are given, complicating maintenance and limiting the extensibility of libraries. Open

multi-methods separate the definition of dynamically dispatched functions from class

definitions. Knowing that classes can be efficiently extended later allows class design-

ers focus on the core functionality and eliminate unnecessary code. This is another

parallel with generic programming, where algorithms build on core requirements that

concepts define.

V.A.6. Implementation in C++ with Open Multi-Methods

In this section, we describe our algorithm library implementation based on open

multi-methods. To begin, we show an open multi-method declaration advance for

forward iterators with a more specific implementation for random access iterators. In

open multi-method terminology, the most general declaration is called a base-method,

and a more specific declaration is called an overrider. A base-method declaration has

to precede an overrider declaration.

void advance(virtual concept forward<int>& it, int dist); // base−method
void advance(virtual concept randomaccess<int>& it, int dist); // overrider

With these open-method declarations, we can provide an implementation for an

iterator wrapper:

void advance(wrapper forward<int>& it, int dist) {
advance(∗it.iterator m, dist); // invokes open−method advance
}

Depending on the dynamic type of iterator m the call to advance either invokes

the base-method (for forward and bidirectional iterators) or the overrider (for random

access iterators).

The internal mechanism of open multi-methods renders the core components of

the previous implementation (§V.A.5) obsolete. Our experimental compiler extracts

the signature of each open multi-method and the class hierarchy from each trans-

141

lation unit. (This eliminates the need for recording the inheritance relationship of

the concept- and model-classes.) The information is passed to a pre-linker, which

synthesizes this data across translation units, checks for ambiguities, and generates

a dispatch table containing entries for each possible type combination. (This elim-

inates the need to maintain the data structure, that associates algorithm instances

with RTTI of the dedicated argument.) The runtime lookup to find the best match-

ing function occurs in constant time for a given number of virtual parameters. (This

eliminates the hierarchy traversal during algorithm instance lookup.)

For the implementation of our algorithm library, we reject the simple design

outlined in the previous code snippet. This would require library users to specify

function bodies for overriders (e.g., for advance with concept randomaccess<int>).

Moreover, runtime concept based libraries could only contain declarations of the open

multi-methods. They could not contain definitions for open multi-methods because

other libraries that use the runtime concept idiom could define them as well, lead-

ing to violations of the one definition rule (ODR). Solutions to this problem would

either require users to write more open multi-method bodies, or make the pre-linker

runtime concept aware and have it generate the missing definitions. Neither of these

approaches seems practical at this stage.

Instead, we base our implementation on a combination of open-methods and

the template mechanism. Currently, open multi-methods cannot be defined as tem-

plate, and for this work we refrain from extending our experimental compiler in that

direction. C++ does not support templated virtual functions - as this feature would re-

quire the linker to support creating the v-tables [170]. Templated open multi-methods

would take this idea one step further by allowing templated virtual parameters:

template <class T>
void advance(virtual T& it, int dist);
// or

142

template <class T>
void advance(virtual concept forward<T>& it, int dist);

Such a language feature is unprecedented and the definition of its semantics is a

topic for further research. However, the instantiation of classes and their functions is

well defined. For our current implementation, we harness the friend mechanism and

the standard template class instantiation to generate algorithm instances. Friends

allow us to comply with the requirement that base-methods and overriders have to

be free standing functions that are defined in the same scope. Class template in-

stantiation allows the user to generate open multi-methods without the need to write

function bodies. In addition, the C++ standard has relaxed ODR rules for func-

tions that are generated from templates. The problem of linker generated v-tables is

overcome by having a pre-linker create open-method tables (the open multi-method

analogue to v-tables).

We show a somewhat simplified implementation of reverse to illustrate the

idea. The actual code is a bit more involved and requires, for example, a superfluous

extra parameter to enable overload resolution to include friend functions that are only

declared inside a class into the candidate set. The omitted details are transparent to

the library user and therefore do not impact the usability.

The base-method reverse is declared as friend inside of a template class and

thus is not a class member per se. The template class rtc reverse allows us to

indirectly define reverse based on a template argument.

// defined in namespace algolib
template <class ValueType>
struct rtc reverse {
typedef concept bidirectional<ValueType> base concept;

friend void reverse(virtual base concept& begin, base concept& end) {
/∗ wrap begin,end into wrapper bidirectional and call std::reverse ∗/
}
};

143

Similarly, we define rtc reverse generic and rtc reverse specific to gen-

erate instances that use wrapper classes or concrete iterators respectively. Deriving

these classes from rtc reverse guarantees that the compiler will find a base-method

for the overrider.

// defined in namespace algolib
template <class Wrapper>
struct rtc reverse generic : rtc reverse<typename Wrapper::value type> {
using typename rtc reverse<typename Iterator::value type>::base concept;
typedef typename Wrapper::concept type iter concept;

friend void reverse(virtual iter concept& begin, base concept& end) {
/∗ wrap begin, end into the matching wrapper class and call std::reverse ∗/
}
};
template <class Iterator>
struct rtc reverse specific : rtc reverse<typename Iterator::value type> {
using typename rtc reverse<typename Iterator::value type>::base concept;
typedef typename map iteratortag to model<Iterator>::type iter model;

friend void reverse(virtual iter model& begin, base concept& end) {
/∗ unwrap begin, end and call std::reverse with the concrete iterator ∗/
}
};

The analogues to the functions add generic and add specific in §V.A.5 are

explicit template instantiation directives.

// add generic implementation suitable for all random access iterators.
template class rtc reverse generic<wrapper randomaccess<int> >;

// add specific implementation for std::list<int>.
template class rtc reverse specific<std::list<int>::iterator>;

The described library functions (§V.A.5) can simply invoke the open multi-

method:

// defined in the same namespace as the wrapper classes
template <class WrapperType>
void reverse(const WrapperType& begin, const WrapperType& end) {

algolib::reverse(∗begin−>iterator m, ∗end−>iterator m);
}

This call is resolved through the open-method table of the first dynamic argument

and invokes the best matching algorithm instance. In contrast to §V.A.5, this involves

144

a simple lookup, similar to a virtual function call, because the open-method tables

have been precomputed by the pre-linker.

Ambiguity resolution policy: With the modeled concept hierarchy and the dy-

namic dispatch restricted to only a single parameter, the ISO C++ implementation

has no ambiguities. An extension towards considering a second argument requires

some ambiguity resolution policy. The options for a library implementation are to

either signal the ambiguity at runtime or choose somehow a preferred candidate (e.g.,

higher preference of earlier parameters, arbitrary choice, or user defined). A com-

piler based implementation has one more possibility: it can flag ambiguities before

runtime and require the user to provide a resolving overrider. This is what the open

multi-method based implementation does. Only when it is too late for programmer

intervention (e.g., in cases that involve dynamic linking), the runtime would make

an unspecified non-random choice. This is sufficient to guarantee the correctness

of STL’s algorithms. An optimal choice between ambiguous overriders would mini-

mize the number of virtual function calls. For an algorithm such as merge this would

require runtime information of the length of its ranges before a call can be dispatched.

V.A.7. Tests

To assess the performance cost of runtime concepts we tested the approaches de-

scribed in sections §V.A.3 and §V.A.4. The numbers presented in this section were

obtained on an Intel Pentium-D (2.8GHz clock speed; 512MB of main memory at 533

MHz) running CentOS Linux 2.6.9-42. We compiled with gcc 4.1.2 using -O3 and

-march=prescott.

145

V.A.7.a. Algorithm Performance

Initially, the vector contained 8 million numbers in ascending order starting from zero.

Then we invoke four algorithms: reverse, find of zero, sort, and lower bound of

zero.

vector<T>: As a reference point for our performance tests we use vector in-

stantiated with a concrete type. Table X shows the number of cycles each operation

needs to complete for a container of int and double respectively. The column to the

right of the number of cycles shows the slowdown factor compared to vector<int>.

The algorithms with O(n) runtime complexity (i.e., reverse and find) run approxi-

mately twice as long when used with type double. This discrepancy can be explained

by the size of the stored data; double is twice as big as int.

Table X. Reference test (vector<int>)

int x vector<int> double x vector<int>

reverse 50230726 1 101301256 2.0

find 24801042 1 54668768 2.2

sort 554503572 1 1157274566 2.1

lower bound 5838 1 13544 2.3

Operations on a Sequence<T>: Table XI shows the results, when the algorithm

library contains instantiations for concrete iterators. The time needed to select the

best match is the only overhead that occurs. Note, that compared to [143] we have

enhanced the dispatch (by avoiding 3-4 heap allocations), which improved the runtime

of lower bound noticeably.

Only when instances for the concrete iterators are missing, does our system

146

Table XI. Test concrete iterators (sequence<T>)

int x vector<int> double x vector<int>

reverse 50635816 1.0 101897418 2.0

find 25428424 1.0 53027609 2.1

sort 551084688 1.0 1173371150 2.1

lower bound 6244 1.1 14616 2.5

resort to fallback implementations. Table XII reports the runtime of these opera-

tions. Note, that the runtime of lower bound is based on an implementation for

wrapper randomaccess iterators (cmp. the call to add generic in §V.A.5).

Table XII. Test fallback functions (sequence<T>)

int x vector<int> double x vector<int>

reverse 4724088964 94.0 4770263204 95.0

find 474239598 19.1 529099774 21.1

sort 16956331602 30.6 17419730692 31.4

lower bound 17066 2.9 18522 3.1

The 94x slower performance for reverse is unacceptable, even for a fallback

implementation. The analysis of these tests reveals three responsible factors: fallback

algorithms can be significantly slower (though the slowdown is not always driven by

a worse runtime complexity), virtual iterator functions, and model allocation on the

heap.

To quantify the contribution of each of these factors we performed additional

147

experiments: Adding a reverse instance for wrapper randomaccess improved per-

formance marginally, 92x for int and 94x for doubles. Each iteration of reverse

calls iter swap once. Gcc’s implementation of iter swap calls another function that

swaps the two elements to which the iterators point. Each function invocation creates

copies of the iterators, which results in 16 million unnecessary heap allocations (and

deallocations). By providing our own reverse implementation, we eliminated those

copies. Then, reverse is only 7.4x slower for int (7.6x for double). However, passing

arguments by value, which is the source of the heap allocations, is common in STL.

For example, the fallback implementation of sort involves more than 36 million heap

allocations. Instead of rewriting the STL algorithms, we could adopt Adobe’s small

object optimization [114] where the wrapper classes reserve a buffer to embed small

objects (Adobe’s open source library [4]).

The analysis of find indicates the following causes degrade performance. The

fallback implementation is based on the forward iterator concept, while the optimal

implementation takes advantage of random access iterators by calculating the trip-

count beforehand and manually unrolling the main loop four times. Adding a generic

instance for wrapper randomaccess eliminates ≈ 1
3

of the virtual functions calls and

improves performance to a factor of 11.7x for ints (12.4 for double).

V.A.7.b. Library Function Selection

With open multi-methods: Since our experimental compiler extends the EDG fron-

tend [69] and generates C files as output, we modified the test setup. Instead of

directly compiling the C++ source, we translate all test cases first to C and compile

those with gcc 4.1.2 and the same optimization flags (-O3 and -march=prescott).

We measure the dispatch overhead by comparing the performance of static calls to

STL functions, with the performance when specific algorithm instances have been

148

Table XIII. Dispatch performance - cold cache

cold-cache static STL call open multi-methods ISO C++

reverse 585 1731 3786

find 927 3065 3905

sort 7776 7912 8634

lower bound 377 1994 2512

added to the library. To underscore the time spent for dispatching, we reduced the

data size to 8 elements of type int. For such a small data set the status of processor

cache and predictors make a difference. Therefore we split the tests into two, where

the first times an initial algorithm invocation - the dispatch structures are not yet in

cache, and the second measures a subsequent invocation of the same four algorithms.

Table XIII shows the number of cycles each call takes. The first call to an

algorithm from the runtime library (reverse) incurs higher cost as it requires loads

of the open method tables/indexes in the case of open multi-methods and RTTI in

the case of the ISO C++ implementation. The calls to algorithms that return an

iterator (find and lower bound) incur additional overhead for allocating the result

of the operation (an iterator model) on the heap. The open multi-method based

implementation is significantly slower than a static call but outperforms the ISO C++

implementation by 500 to 2000 cycles.

Table XIV shows the results for an an ideal scenario, where all the data (i.e.,

open method tables/indexes, RTTI, code) is in cache and the processor’s predictors

can draw from statistical data of previous runs. The overhead of the open multi-

method invocation shrinks to less than 100 cycles when compared to a static call

(i.e., reverse and sort. find and lower bound require a heap allocation). The ISO

149

Table XIV. Dispatch performance - hot cache

hot-cache static STL call open multi-methods ISO C++

reverse 157 220 445

find 158 1008 1181

sort 5631 5725 5934

lower bound 224 1159 1209

C++ implementation is about 200 cycles slower.

V.A.8. Related Work

The ASL [4] introduced the runtime concept idiom, employing type erasure [1] to pro-

vide the any regular library (similar to the boost any library), and its generalization,

the poly library. The poly library generalizes the idiom to support refinement and

polymorphic down-casting, encapsulates the common tasks required to create non-

intrusive runtime-polymorphic value-based wrappers. The poly library design goals

and implementation are elaborated in [114].

ASL also provides the any iterator library offering runtime-polymorphic iterators

for specific types as a proof of concept. Becker [28] presents a similar library. Bourdev

and Järvi [33] discuss a mechanism for a closed set of types that falls back to static-

dispatch when type erasure is present.

Our work extends the previous results to an open library of algorithms operating

on runtime-polymorphic containers, achieving realistic performance levels by using

static dispatch where possible.

150

V.B. Comparison of Programming Styles

In order to compare open-methods with double dispatch and the visitor pattern, we

have implemented some of the examples discussed in §IV.B.

V.B.1. Image Format Conversion

The first example is image conversion. To meet the performance requirements typical

for image processing applications, information about the exact source and destination

formats is indispensable for an efficient conversion. With this information, we can

call a routine geared for that specific pair of formats. Any attempt to work through a

common base interface will significantly hinder performance, and should be avoided.

This is why we use a fairly shallow class hierarchy to represent different image formats.

Another interesting aspect of this example is that when the pair of formats is known

statically, it is feasible to write a generic conversion algorithm that relies on some

format traits. This is an approach taken by Adobe’s GIL library [33]. Therefore the

main goal in this example is to uncover the dynamic types of both arguments and pass

on these uncovered arguments together with their static types to a set of overloaded

template functions.

template <class SrcImage, class DstImage>
bool generic convert (const SrcImage& src, DstImage& dst);

typedef unsigned char color component;

struct image
{

// member−functions to access row buffer, width, height etc.
};
struct RGB : image // abstract base of all RGB images
{
struct color { color component R, G, B, A; };
virtual color get color (int i , int j) const = 0;
virtual void set color (int i , int j , const color & c) = 0;
};

151

struct RGB32 : RGB { /∗implements get color, set color ∗/ };
// ... Similar definitions for RGB24, RGB16, RGB15, RGB08

struct YUV : image // abstract base of all YUV images
{
struct color { color component Y, U, V, A; };
virtual color get color (int i , int j) const = 0;
virtual void set color (int i , int j , const color & c) = 0;
};
struct UYVY : YUV { /∗implements get color, set color∗/ };
// ... Similar definitions for YUY2,Y41P,CLJR,YVU9,YV12,IYUV,I420,Y800 etc.

struct CMYK : image
{
struct color { color component C, M, Y, K; };
virtual color get color (int i , int j) const = 0;
virtual void set color (int i , int j , const color & c) = 0;
};

Open multi-methods to handle the cases can be listed separately from class def-

initions:

// Base open−method. Fails as we do not know anything about the formats
bool convert(virtual const image& src, virtual image& dst) { return false; }
// Slow polymorphic conversions
bool convert(virtual const RGB& src, virtual RGB& dst);
bool convert(virtual const RGB& src, virtual YUV& dst);
bool convert(virtual const YUV& src, virtual RGB& dst);
bool convert(virtual const YUV& src, virtual YUV& dst);

// Fast generic conversions, generated for each combination of types
bool convert(virtual const RGB32& src, virtual RGB32& dst)
{
return generic convert(src, dst);
}
bool convert(virtual const RGB32& src, virtual RGB24& dst)
{
return generic convert(src, dst);
}
bool convert(virtual const RGB32& src, virtual YUY2& dst) { /∗ . . . ∗/}
bool convert(virtual const RGB32& src, virtual YVU9& dst) { /∗ . . . ∗/}
bool convert(virtual const RGB32& src, virtual I420& dst) { /∗ . . . ∗/}

In case of double dispatch, the code becomes cluttered with definitions to support

the mechanism:

152

// Forward declare all classes that would participate in double dispatch
struct RGB32;
struct RGB24;
// ... others

struct image
{

// member−functions to access row buffer, width, height etc.

// Double dispatch support code
virtual bool convert to(image& dst) const = 0;
virtual bool convert from(const RGB32 & src) { return false; }
virtual bool convert from(const RGB24 & src) { return false; }
virtual bool convert from(const RGB16 & src) { return false; }
// ... etc. for all other leaf image classes
};
struct RGB32 : RGB
{
virtual bool convert to(image& dst) const { return dst. convert from(∗this); }
virtual bool convert from(const RGB32 & src)
{
return generic convert (src , ∗this);
}
virtual bool convert from(const RGB24 & src)
{
return generic convert (src , ∗this);
}
// ... etc. for all other leaf image classes
};

The major disadvantage of the double dispatch approach is that we have to fore-

see the whole hierarchy at the moment we are defining its root. This is necessary

for declaring the interface for uncovering types. Once it is defined, we cannot ex-

tend it for newly created classes - they will all be treated as their closest ancestor

in the hierarchy. Another problem with double dispatch is that its supportive struc-

tures clutter the code. This may be acceptable when double dispatch is needed for

only one algorithm, but when several algorithms require it (e.g., we would also like

to have a polymorphic bool compare(virtual const image& a, virtual const

image& b)) then the code may quickly get out of hands. While this aspect of the

153

double dispatch can be solved with the visitor pattern at the cost of two extra virtual

calls, the open-method solution will remain cleaner as open-methods do not even need

to be defined together with the class. We discuss the visitor pattern in greater detail

in our second example.

The number of lines in the implementation with open methods was smaller, but

all in all, the number of lines in both implementations is growing as square of the

number of classes in the hierarchy. We note that for open multi-method implementa-

tions this is a rather exceptional case, because the class hierarchy was shallow, while

we were interested in uncovering all possible type combinations. For the double dis-

patch, this is rather typical case because the supportive definitions will have to be

there anyway.

In the image conversion example the main purpose of the open-methods is to

discover the dynamic types of both arguments and then forward the call to an over-

loaded function. Templated open-methods, as described in §V.A.6, further simplify

the design:

// Base open−method. Fails as we do not know anything about the formats
bool convert(virtual const image& src, virtual image& dst) { return false; }
// Slow polymorphic conversions
bool convert(virtual const RGB& src, virtual RGB& dst);
bool convert(virtual const RGB& src, virtual YUV& dst);
bool convert(virtual const YUV& src, virtual RGB& dst);
bool convert(virtual const YUV& src, virtual YUV& dst);

// Fast generic conversions , generated for each combination of types
template <class Source, class Destination>
bool convert(virtual const Source& src,virtual Destination & dst)
{
return generic convert (src , dst);
}

154

V.B.2. AST Traversal

The second example discusses the use of open-methods to traverse ASTs. The key

focus thereby is on extending classes with open dispatch rather than multiple dispatch.

Open-methods essentially become virtual functions that can be added to a class after

it has been defined. The examples in this section reflect our experience of writing an

analysis pass for the Pivot source-to-source transformation infrastructure §III.A. The

Pivot uses the visitor pattern to type safely uncover the dynamic type of AST nodes.

The Pivot consists of approximately 150 classes, but in the ensuing discussion, we

limit the AST hierarchy to only two of them, where one Expr is a base class for all

kinds of expressions, and the other Unary is an implementation of unary expressions.

struct Expr
{
. . .
virtual accept(Visitor& v) const { v.visit(∗this); }
};
struct Unary : Expr
{
. . .
accept(Visitor& v) const { v.visit(∗this); }
};
struct Visitor
{
void visit(const Expr&) = 0;
void visit(const Unary&) = 0;
};

Forwarding calls to base implementations: Currently, the Pivot has about 160

node types. The Pivot provides a number of intermediate abstract base classes that

factor commonalities (e.g., Expr, Type, Declaration, etc.) of the 160 node types. If

the logic of the visitor can be implemented in terms of a single base class, the bodies

of the more specific types will need to explicitly invoke the base implementation

(compare to the implementation for Unary). Open-methods have this forwarding

155

behavior by default.

struct SimpleVisitor : Visitor
{
virtual void visit(const Expr& e) { /∗ . . . ∗/ };
virtual void visit(const Unary& u)
{ visit(static cast<Expr&>(u)); // calls visit(Expr&)
}
};
// All objects derived from Expr will be handled by simpleOpenMethod
void simpleOpenMethod(virtual const Expr&) {/∗ . . . ∗/}
void foo(Expr& e, Unary& u)
{

SimpleVisitor vis;

e.accept(vis); // invokes SimpleVisitor::visit(const Expr&)
u.accept(vis); // invokes SimpleVisitor::visit(const Unary&) first

simpleOpenMethod(e); // invokes simpleOpenMethod(const Expr&)
simpleOpenMethod(u); // invokes simpleOpenMethod(const Expr&)
}

Passing of arguments and results: The signatures of the visit and accept func-

tions are determined when the visitor and the AST node classes are defined. Passing

additional arguments to (or returning a value from) the visit functions requires inter-

mediate storage as part of the visitor class. In the following example, inh and syn

correspond to the input and result values of a function.

struct AnalysisPassVisitor : Visitor
{
const InheritedAttr & inh; // data member for input parameter
SynthesizedAttr ∗ syn; // data member for return value

Visitor (const InheritedAttr & inherited) : inh(inherited), syn() {}
. . .
};

To avoid code duplication, it is useful to factor constructing the visitor and reading

out the result into separate functions.

SynthesizedAttr ∗ visit foo (const Expr& e, const InheritedAttr & inh)
{

AnalysisVisitor v(inh); // construct the visitor and pass the context
e. accept(v);
return v. syn; // read and return the result

156

}

With open-methods, additional arguments can easily be specified as part of their

signatures.

SynthesizedAttr∗ analysisPass(virtual const Expr& e, const InheritedAttr& inh);

Covariant return type: Since the result requires intermediate storage, covariant

return types cannot easily be implemented with the visitor pattern. Consider the

following implementation of a visitor that creates and returns a copy of an AST

node.

struct CloneExpr : Visitor
{

Expr∗ result ; // data member for return value

// make a copy of an Expr object
virtual void visit (const Expr& e) { result = new Expr(e); }
// make a copy of an Expr object
virtual void visit (const Unary& u) { result = new Unary(u); }
};
Expr∗ clone(const Expr& e) // analog of a base−method
{

CloneExpr v;
e. accept(v);
return v. result ;
}

Cloning a unary expression loses some type information, because the cloned objects

would get returned as Expr. An implementation that is able to return covariant types

requires a different visitor implementation (or instantiation) with similar boilerplate

code for each covariant return type. These repetitive definitions can be eliminated by

using templates. The following example shows a cloning visitor that returns a Unary

object.

struct CloneUnary : Visitor
{

Unary∗ result ; // data member for covariant return value
virtual void visit (const Expr& e) { assert (false); } // Can never be called !
virtual void visit (const Unary& u) { result = new Unary(u); }

157

};
Unary∗ clone(const Unary& u) // analog of an overrider with covariant return type
{

CloneUnary v;
u.accept(v);
return v. result ;
}

The definition of open-methods with covariant return types is straight forward:

Expr& clone(virtual const Expr& a); // base−method
Unary& clone(virtual const Unary& u); // overrider with covariant return type

Similar to open-methods, a hand crafted technique for modeling covariant return type

with visitors also creates additional “dispatch tables” for each overrider with covariant

return type. Those are created in a form of v-tables for additional visitors. Inter-

estingly enough, the overall size of such dispatch tables would be larger than those

generated for open-methods, because visitors require v-table entries for visit meth-

ods that can never occur at runtime (see the assert in CloneUnary::visit(Expr&)

above). This is not the case with open-methods as overriders with covariant return

type will operate on smaller class hierarchies for their arguments.

Passing open-methods as callbacks: Open-methods nevertheless have disadvan-

tages sometimes in comparison with the visitor pattern. Consider a traversal mech-

anism that traverses an AST in certain order. The mechanism can accept either a

visitor or an open-method for node visitation:

void evaluation order traversal (const Expr& e, Visitor & v);
void evaluation order traversal (const Expr& e, void(∗fn)(const Expr&));

In case of a visitor, we can pass or accumulate some data during visitation. However

in case of open-method, we would need to accumulate data elsewhere.

struct CodeGenerationVisitor : Visitor
{

std::vector<Instruction> instructions; // instruction stream inside visitor
void visit(const Expr& e) { /∗ generate code for e∗/ }
// ...

158

};
CodeGenerationVisitor v;
evaluation order traversal(root node(),v);

Although our current implementation does not support taking the address of an

open-method, we can simulate that behavior by wrapping the open-method call inside

a thunk.

std::vector<Instruction> instructions; // global instruction stream

void generate code(virtual const Expr& e) { instructions.push back(...); }
void generate code(virtual const Unary& e) { instructions.push back(...); }
//...
void thunk generate code(const Expr& e) { generate code(expr); }
evaluation order traversal(root(), &thunk generate code);

V.C. Comparison with Other Implementation Techniques

In order to discuss time and space performance, we compare code generated by our

C++ Open Method Compiler, described in §??, to a number of prototype implemen-

tations, the visitor pattern, Cmm, DoubleCpp, and the Loki library. The prototypes

of our design alternatives were implemented in C to approximate the lowering of C++

code to C. They were initially developed to assess performance trade-offs of different

approaches and workaround techniques and include open-methods (can be declared

freely), multi-methods (have to be declared in class, thus the om-tables can be embed-

ded into the v-table, saving two indirections per argument §IV.F.3.a.), and a Chinese

Remainder (§IV.F.3) based implementation. These implementations layout the dis-

patch table for the concrete example described below as C data structures, and then

dispatch calls through it.

We wrote 20 classes (representing shapes, etc.) that can intersect each other.

Overall, this results in 400 combinations for binary dispatch functions. We imple-

mented 40 specific intersect functions to which all of the 400 combinations are dis-

159

patched. In order to get a reliable timing of the function invocation, these 40 intersect

functions only increment a counter. Since not all techniques we use support multiple

inheritance, these 20 classes only use single inheritance. The actual test consists of

a loop that randomly chooses 2 out of 32 objects and invokes the intersect method.

We implemented a table-based random number generator that is simple and does not

contain any floating-point calculations or integer-divisions. We ran the loop twice

with the same random numbers: The first run allows implementations that build the

dispatch data structure on the fly to warm up and load data/code into the cache. The

second loop was timed. The clock-cycle based timer takes the time before and after

the loop and we calculate the average number of clock-cycles per loop to compare the

results.

V.C.1. Implementations

We tested the approaches on a Pentium D, 2.8 GHz running CentOS Linux and a

Core2Duo running Mac OSX. The code for the performance tests was compiled with

g++ 4.1 (Linux) and gcc 4.0.1 (OSX) with optimization level set to -O3. The C++

Open Method Compiler generates source code lowered to C, which was compiled with

the corresponding gcc versions and linked to the pre-linker generated dispatch tables.

Using the Chinese Remainder approach, the number associated with the dispatch

table grows exponentially with the number of types. Therefore the test is limited to

eight types instead of 20 and the size of the executable is omitted.

For Loki, we only tested the static dispatcher because the others require manual

handling of all possible cases. Using other dispatchers would have been closer to a

scenario of a manually allocated array of functions through which calls are made.

However, as we indicated before, the dual nature of multi-methods require them to

provide both dynamic dispatch and automatic resolution mechanism.

160

Table XV. Experimental results

Approach Size (bytes) Cycles Cycles

(per loop) (per loop)

Linux Pentium-D Core2Duo

Virtual function n/a 75 55

Multi-methods prototype 42 972 78 60

Open-methods prototype 40 636 82 63

C++ Open-method Compiler 42 504 82 64

Double Cpp 34 812 120 82

C++ Visitor 38 236 132 82

Chinese Remainders prototype n/a 175 103

Cmm (constant time) 155 344 415 239

Cmm 155 056 1 320 772

Loki Library 75 520 3 670 2 238

V.C.2. Results and Interpretation

Table XV shows a summary of our experimental results for execution time and pro-

gram size.

Executable size: To obtain a comparable size of the executable, we used the

regular EDG frontend to generate C code for the alternative approaches. Then we

compiled all intermediate C files with gcc, where optimizations were set to minimize

code size. Moreover, we stripped off the symbols from the executables. The size

of dispatch tables is mentioned as one of the major drawbacks of providing multi-

methods as programming language feature [195]. However, our results reveal that the

best achievable code size is roughly the same for visitors, prototyped multi-/open-

161

method, and C++ Open-method Compiler implementations. With the visitor, each

shape class has intersect methods for all 20 shapes of the hierarchy. A somewhat

smarter approach would be to remove redundant intersect overriders. However, re-

moving specific overriders is tedious and difficult to maintain, since the dispatch would

be based on the static type information of the base class. Even an optimized approach

would require as many v-table entries as there are in a dispatch table, simply because

each type contains 20 intersect entries in the v-table. Multiplying this with the num-

ber of shapes, 20, results in 400, exactly the number of entries found in the dispatch

table. We do not discuss the program size of the two Cmms and Loki, since they use

additional header files, such as <typeinfo> and <stdexcept> that distort a direct

comparison.

Execution time: The results for prototyped multi-methods, prototyped open-

methods, and C++ Open-method Compiler are (as expected) roughly comparable to

a single virtual function dispatch, which needs 75 (55 on the Core2Duo) cycles per

loop. Hence, the better performance compared to the visitors is not surprising. How-

ever, the fact that multi-methods reduce the runtime to 62% (73%) of the reference

implementation using the visitor is noteworthy. We conjecture this is an effect of the

size of the class hierarchy and that the time to double dispatch depends on the number

of overriders. On the Pentium D, two observations support our conjecture: firstly,

the DoubleCpp-based visitor has no redundant overriders and runs slightly faster.

Secondly, we simulated an analysis pass dispatching over AST-objects of 20 different

types and counting the category to which they belong (type, declaration, expression,

statement, other). In this case, the double dispatch has only 20 leaf-functions instead

of 400 and our dispatch test runs 78 cycles instead of 132. The open-method approach

requiring only five overriders, is still faster and needs 68 cycles.

The difference between the prototyped multi-methods and open-methods (the

162

comparison with the C++ Open-method Compiler is stated in parenthesis) is within

the expected range. Four more indirections require 4 (4) more clock cycles on the

Pentium and 3 (4) more on the Core2Duo. Although significantly slower, Cmm

(constant time) performs better than expected, since its author estimates the dispatch

cost as 10 times a regular virtual function call. As expected the two non-constant

time approaches perform worst.

Significance of performance: The performance numbers come from experiments

designed to highlight the cost of multiple dispatch: the functions invoked hardly

do anything. Depending on the application the improved performance may or may

not be significant. For the image conversion example, gains in execution speed are

negligible compared to time spent in the actual conversion algorithm. In other cases,

such as the evaluation of expressions using user-defined arithmetic types, traversal of

abstract syntax trees, and some of the most frequent shape intersect examples, the

speed differences among the double dispatch approaches appear to be notable.

Contrary to much “popular wisdom”, our experiments revealed that for many

applications the use of dispatch tables for open-methods and multi-methods actually

reduce the program size compared to brute-force and work-around techniques. Under

the assumption that the use of open-methods in C++ would be similar to Muschevici

et al.’s results (see §II.B), we conclude that the size of the dispatch table will remain

small for most practical cases.

163

CHAPTER VI

RECOVERY OF HIGHER LEVEL LANGUAGE ABSTRACTIONS

This section discusses the interaction of the tools described in (Chapter III) to find

code that is expressible by a higher level language feature or library function. We start

by analyzing a higher level abstraction: initializer lists. We describe the semantics

of the language feature and how it can be approximated by workaround codes. We

formulate the recovery techniques by using initializer list constructor used by C++0x

containers as the canonical example.

VI.A. Semantics and Workaround Definition

Initializer list constructors (§I.B.1, [3], [120]) allow the specification of initial values

that will be stored in the data structure. For example:

// initializes a vector with three ints
std::vector<int> v1 = { 1, 2, 3 };
// constructs a vector with three elements of type SomeType
// SomeType has to be constructable from an int
std::vector<SomeType> v2 = { 1, 2, 3 };

The first case (v1) creates a vector with three int values. The second case (v2)

creates a vector with three SomeType values, where each element is created by a

constructor that takes an argument of type int.

After the construction, both containers hold three elements. In current C++,

there is a single technique allowing to construct a container with a number of different

elements. This technique relies on an auxiliary container (e.g., C style array) to pass

a range of elements (e.g., the position of the first element and the position one past

the last element) to a constructor.

// C++03 uses range construction
static const int arr[] = { 1, 2, 3 };

164

std::vector<SomeType> v2 (arr, arr+sizeof(arr)/sizeof(arr[0]));

Numerous other workaround techniques exist. Besides a sequence of push back

operations mentioned in the introduction §I.B.1, programmers can resort to various

combinations. For example, code can use STL’s algorithms (e.g., for each in com-

bination with a back inserter) or a loop to copy elements from a static array or a

combination of both. Other variations include member variables that have an STL

container type (they are declared at class scope, initialized as part of the constructor

member initialization list, and potentially filled with values in the constructor body),

global containers, or classes that (privately) inherit from a STL container.

VI.A.1. Semantic Equality

For any kind of rejuvenation analysis, the question arises whether the replacement

of the workaround code produces semantically equivalent code. The argument to

establish the validity of a rejuvenation can rest on several models:

Strict state equivalence: One strategy to establish that the source codes before

and after the rejuvenation are semantically equal is to compare the program state

after the execution of a rejuvenated code region. In addition to directly involved

objects, the program state also depends on operations with side effects on memory

management and IO system. As a consequence, strict state equivalence allows rejuve-

nations that have no observable impact. To establish strict state equivalence a priori,

a system requires that semantic guarantees can be derived from the ISO language

standard.

Consider the rejuvenation that replaces C++03 style range construction with a

C++0x initializer list. (Only) if the implementation of the range and initializer list

constructors use the same underlying implementation, the result is state equivalent.

165

Relaxed state equivalence: Often strict equivalence curtails the applicability of

rejuvenations. Relaxing requirements on some observable side effects allows behav-

ior improving transformations. Consider code that constructs a vector and pushes

back a number of elements. If the capacity of the vector is not properly adjusted,

the sequence of push back might trigger a resize. Resize entails dynamic memory

allocation and the relocation of elements. Rejuvenating this code towards initializer

lists eliminates these intermediate steps. The result is a changed memory allocation

pattern (less allocations and lower likelihood of memory fragmentation). The less fre-

quent need to copy elements is observable by user defined copy constructors (e.g., to

count the number of constructed objects). Rejuvenation might change the final state

of an object. For example, the use of an initializer list provides the constructor better

size information, which a data structure could use to optimize memory management.

We argue that these optimizations are valid in the context of migrating source

code to a newer edition of a programming language:

• code where the correctness depends on the memory management strategy of

a standard library implementation is inherently fragile. Changing the library

implementation, which is nothing extraordinary during programming language

evolution, would invalidate such code.

• C++ allows code optimizations if they do not modify a program’s behavior [27].

In order to avoid unnecessary overhead from copying objects, compilers can

elide calling copy constructors in several contexts. Moreover, the C++0x will

introduce rvalue constructors (to enable move semantics) [27]. Consequently,

implementations of standard containers will rely less on copy constructors.

Unknown state equivalence: It is also desirable to detect source code that looks

as if it could benefit from rejuvenation, but where the semantics’ preservation cannot

166

be guaranteed by the program. These cases need to be judged by a human soft-

ware maintainer. An example for such a rejuvenation would be code transformations

towards C++0x’s for range loop:

void forall books(std::vector<Book>& vec)
{
for (Book& book : vec)

/∗ . . . ∗/;
}

For this code, the C++0x standard describes its semantics with the following loop.

void forall books(std::vector<Book>& vec)
{
for (std::vector<Book>::iterator first = vec.begin(), last = vec.end();

first != last; ++first)
/∗ . . . ∗/;

}

The loop is turned into a regular for loop, where the iterator first is incre-

mented with the prefix ++ operator. Likewise, source code that use a different syntax

(e.g., first++, first+=1) to increment the iterator might also be a rejuvenation can-

didate. For such cases, static analysis cannot always guarantee semantic equivalence

(e.g., when virtual functions are involved §V.A.1).

VI.B. Workaround Recognition

For the implementation of the initializer list rejuvenation, we utilize the tools de-

scribed in (Chapter III). In particular, we use the pattern matcher to specify “micro-

patterns” that describe portions of a workaround idiom. We use a state machine

to determine whether the recognition sequence of these micro patterns constitute a

proper workaround pattern.

VI.B.1. Patterns of Initializer List Construction

This section describes the micro-patterns that we utilize to recover initializer lists.

167

Types: The rejuvenation’s goal is the recovery of STL container constructions

that can benefit from initializer lists. The following pattern defines the STL container

types that we analyze.

pattern sequence container<Type>(ilist : &InitializerList)
alias : Alias();
{

/∗1∗/ vector<|...|> => ;
/∗2∗/ list<|...|> => ;
/∗3∗/ e :: sequence container(ilist)

=> /∗ skips any possible namespace prefix ∗/;
/∗4∗/ alias

=> { if (!is sequence container(∗alias−>aliasee)) { NOMATCH; }; else {}; };
}

The pattern describes the type as it is written in the source code. The first two

lines describing an instantiation in XPR, where the template arguments are specified

within the <| and |> tokens. The ... indicate that any sequence of arguments

matches the pattern. Potential name namespace prefix are skipped by line 3. Con-

tainer instantiations that are obscured with typedefs can be skipped as indicated by

(4). Type qualifiers can be treated likewise.

Object Constructors: The first code snippet defines code that recognizes con-

tainer construction. The pattern uses a user-defined object ilist. The InitializerList

implements a simple state machine to determine whether a given sequence makes a

valid initializer list constructor. Note that with the pattern match generator it is

currently not possible to specify the absence of an initializer. Thus, the distinction

between default and other constructors is encoded inside the action block (i.e., call

to uses default ctor).

pattern construction<Stmt>(ilist : &InitializerList)
default ctor : Var(..., sequence container(ilist));
range ctor : Var(..., sequence container(ilist), range initializer(ilist));
{

default ctor;
=> { if (uses default ctor(v)) { ilist.ctor(v); } else { NOMATCH; } };

168

range ctor;
=> { ilist.range ctor(range ctor); }

}

The range initializer describes the initializer consisting of two pointers to an

array.

pattern range initializer<Expr list>(ilist : &InitializerList)
arr1 : Var();
arr2 : Var();
t : Type();
{

array base(arr1), arr2 + array ofs(arr2, t, ilist)
=> { ilist.range(arr1, arr2, t); };

array base(arr1), &arr2[array ofs(arr2, t, ilist)]
=> { ilist.range(arr1, arr2, t); };

}

The following code gives the definition of array base and array ofs. The latter

recognizes two variants (1,2) of specifying the end of an array. It could be extended

to include any arbitrary expression (or constant value).

pattern array ofs<Expr>(arr : Var, t : Type, ilist : &InitializerList)
e : Expr();
{

/∗1∗/ sizeof(arr) / sizeof<|t|>() => { ilist.array end(arr, t); };
/∗2∗/ sizeof(arr) / sizeof(arr[e]) => { ilist.array end(arr, e); };
/∗3∗/ (array ofs(arr, t, ilist)) => ; /∗ skips parenthesis ∗/
}
pattern array base<Expr>(arr : Var)

a : Var(..., Array());
{

a => { arr.set(a); };
(array base(arr)) => ; /∗ skips parenthesis ∗/
}

Coding patterns: This following code snippet defines the expression patterns

we use for describing a workaround technique (sequence of push back operations).

The first two alternatives recognize calls to reserve and push back respectively and

forward the data to the ilist state machine. Line (3) defines cases when the container

is found in any other context; the ilist state machine interprets such a case as the

169

end of the initialization sequence. Line 4 recognizes any other expression. The ilist’s

function expr traverses e’s sub expression and matches them against the expression

patterns defined by pat ilist.

pattern pat ilist<Expr>(ilist : &InitializerList)
reserve : Fundecl(”reserve”);
push back : Fundecl(”push back”);
cont : Var();
e : Expr();
{

/∗ 1 ∗/ reserve(&cont, e) => { ilist.reserve(reserve, cont, e); };
/∗ 2 ∗/ push back(&cont, e) => { ilist.push back(push back, cont, e); };
/∗ 3 ∗/ cont => { ilist.var use(cont); };
/∗ 4 ∗/ e => { ilist.expr(e); };
}

VI.B.2. The State Machine

To validate that the combination of recognized micro patterns form a workaround

pattern, we use a state machine. Each recognized workaround pattern leads to a

state transition. Fig. 14 shows the state machine that recognizes the sequences of

push back statements.

Fig. 14. Statemachine recognizes initializer list workaround

170

VI.C. Results

Our actual implementation extends the presented version and recognizes more varia-

tions of initializer list workarounds, such as calls to push back in simple for loops,

and the use of STL containers as data members. In addition, our implementation

reports code where two pointers and a newly constructed container are directly or

indirectly (e.g., as member of back inserter) passed to function calls.

The pattern definition file is 69 lines of code (loc). The generated pattern match-

ing code is about 700 loc. The remaining project (i.e., state machine, binding of the

traversal framework to the pattern matching code, and analysis of function call’s

arguments) consists of 700 hand written lines of code.

VI.C.1. Tests

Besides synthetic tests, we ran our rejuvenation tool on four arbitrarily chosen open

source projects that use STL containers: Eboard (v1.1.1, an internet chess client based

on GTK, available from http://www.bergo.eng.br/eboard/), WxCam (v1.0.4, an ap-

plication that records video streams based on the WxWidget library, http://wxcam.sf.net/),

Fluxbox (v1.0rc3, a window manager, http://www.fluxbox.org/), and Referencer

(v1.1.6, a bibliography management system based on GNOME, http://icculus.org/referencer/).

Our application found code in Fluxbox and Referencer that can benefit from the C++

initializer list extension. Fluxbox consists of about 38,200 LOC (not counting stan-

dard and third-party library header files). It contains three instances where a STL

container is initialized with user-interface elements by using between 8 and 17 con-

secutive push back operations. Referencer’s source code has about 16,000 LOC and

our implementation found a map being initialized with 22 predefined key/value pairs.

For Eboard (33,600 LOC) and WxCam (10,400 LOC) our tool did not find any code

171

that can be modeled with initializer lists.

VI.C.2. Discussion

Using a pattern matcher simplifies the implementation. By automatically writing

boilerplate code, the generator uses well studied techniques for constructing a pattern

recognition engine. This eliminates time and error prone user code development.

The use of a high level source code representation poses a number of challenges

for analysis programs. Workaround idioms can be written in a wide variety of forms.

With the pattern matcher we can address these problems to some degree. Extra case

handling can deal with most common variations, such as parenthesized expressions,

numerous forms of getting the beginning address of an array, or type aliases. Prepar-

ing for all unusual styles and variations becomes cumbersome. Consider the many

variations programmers can express loops (e.g., several syntactic constructs multi-

plied by several variations). The pattern definition of such diverse implementation

technique would benefit from a lowering pass that generates canonical tree represen-

tations. Alternatively, the pattern matcher could be extended to generate equivalent

patterns from a base definition.

Moreover, pattern matching on a source level tree representation does not lean

itself well towards data flow sensitive analysis. Bringing the representation into a

canonical form, for example through symbolic expression propagation, can address

some of these problems. Integration with dataflow frameworks is another way to

extend the current implementation.

172

CHAPTER VII

REJUVENATION OF LIBRARY USE

Multi-core architectures are state-of-the-art on new personal computers (and some

embedded systems) with the number of available cores per system bound to increase

rapidly in the foreseeable future. Programming parallel software is non-trivial because

concurrency entails many hazards including race conditions, deadlocks, livelocks, or-

der violations, software lockout, and atomicity violations. Providing safe and efficient

concurrent synchronization is important for the design of real-time systems. Lock-

free programming techniques [93] have been demonstrated to be effective in delivering

performance gains and preventing some hazards, typically associated with the appli-

cation of mutual exclusion. In this section, we develop a non-blocking, growable

array that can replace STL vectors that are shared by multiple threads in concurrent

software and whose access is protected by fine grained mutual exclusion locks.

VII.A. Introduction

Developers writing parallel and multi-threaded code face challenges not known in

sequential programming: notably to correctly manipulate data where multiple threads

access it. Currently, the most common synchronization technique to guard critical

sections is mutual exclusion locks. A mutual exclusion lock guarantees thread-safety

of a concurrent object by blocking all contending threads except the one holding

the lock. This can seriously affect the performance of the system by diminishing its

parallelism. The behavior of mutual exclusion locks can sometimes be optimized by

using fine-grained locks [95] or context-switching.

The use of non-blocking (lock-free) techniques has been suggested to prevent

the interdependence of the concurrent processes introduced by the application of

173

locks [90].

VII.A.1. Non-Blocking Synchronization

As defined by Herlihy [90, 91], a concurrent object is non-blocking if it guarantees that

some process in the system will make progress in a finite number of steps. An object

that guarantees that each process will make progress in a finite number of steps is

defined as wait-free. Non-blocking (lock-free) and wait-free algorithms do not apply

mutual exclusion locks. Instead, they rely on a set of atomic primitives such as the

word-size CAS instruction. Common CAS implementations require three arguments:

a memory location, Mem, an old value, Vold, and a new value,Vnew. The instruction

atomically exchanges the value stored in Mem with Vnew, provided that its current

value equals Vold. The architecture ensures the atomicity of the operation by applying

a fine-grained hardware lock such as a cache or a bus lock (e.g.: IA-32 [94]). The use

of a hardware lock does not violate the non-blocking property as defined by Herlihy.

Common locking synchronization methods such as semaphores, mutexes, monitors,

and critical sections utilize the same atomic primitives to manipulate a control to-

ken. Such application of the atomic instructions introduces interdependencies of the

contending processes. In the most common scenario, lock-free systems utilize CAS in

order to implement a speculative manipulation of a shared object. Each contending

process speculates by applying a set of writes on a local copy of the shared data

and attempts to CAS the shared object with the updated copy. Such an approach

guarantees that from within a set of contending processes, there is at least one that

succeeds within a finite number of steps.

174

VII.A.2. Non-Blocking Data Structures

Recent research into the design of lock-free data structures includes linked-lists [87,

123] double-ended queues [124, 178], stacks [89], hash tables [123, 156] and binary

search trees [74]. The problems encountered include excessive copying, low paral-

lelism, inefficiency and high overhead. Despite the widespread use of the STL vector

in real-world applications, the problem of the design and implementation of a lock-free

dynamic array has not yet been discussed. The vector’s random access, data local-

ity, and dynamic memory management poses serious challenges for its non-blocking

implementation. Our goal is to provide an efficient and practical lock-free STL-style

vector.

VII.A.3. A Non-Blocking Vector

The vector is the most versatile and ubiquitous data structure in the C++ STL [171].

It is a dynamically resizable array that provides automatic memory management,

random access, and tail element insertion and deletion with an amortized cost of

O(1).

Our non-blocking resizable array implementations [57] are based on a single 32-

bit word atomic compare-and-swap (CAS) instruction. It provides a linearizable and

highly parallelizable STL-like interface, lock-free memory allocation and management,

and fast execution. Our current implementation is designed to be most efficient on

multi-core architectures. The presented design implements the most common STL

vector’s interfaces, namely random access read and write, tail insertion and deletion,

pre-allocation of memory, and query of the container’s size. The main target of our

design is to deliver good performance for such systems (§VII.C).

175

VII.B. Implementation

The major challenges of providing a lock-free vector implementation stem from the

fact that key operations need to atomically modify two or more non-colocated words.

For example, the critical vector operation push back increases the size of the vec-

tor and stores the new element. Moreover, capacity-modifying operations such as

reserve and push back potentially allocate new storage and relocate all elements

in case of a dynamic table [54] implementation. Element relocation must not block

concurrent operations (such as write and push back) and must guarantee that inter-

fering updates will not compromise data consistency. Therefore, an update operation

needs to modify up to four vector values: size, capacity, storage, and a vector’s ele-

ment.

Fig. 15. Lock-free vector, T denotes a data structure parameterized on T.

The UML diagram in Fig. 15 presents the collaborating classes, their program-

ming interfaces and data members. Each vector object contains the memory locations

of the data storage of its elements as well as an object named “Descriptor” that en-

capsulates the container’s size, a reference counter required by non-blocking reference

scheme ([126]) and an optional reference to a “Write Descriptor”. Our approach re-

quires that data types bigger than word size are indirectly stored through pointers.

Like Intel’s concurrent vector [153], our implementation avoids storage relocation and

176

its synchronization hazards by utilizing a two-level array. Whenever push back ex-

ceeds the current capacity, a new memory block twice the size of the previous one is

added.

The semantics of the pop back and push back operations are guaranteed by

the “Descriptor” object. The use of a “Descriptor” allows a thread-safe update of

two memory locations (Barnes-style announcement [21]) thus eliminating the need

for a DCAS instruction. An interrupting thread intending to change the descriptor

will need to complete any pending operation. Not counting memory management

overhead, push back executes two successful CAS instructions to update two memory

locations.

VII.B.1. Implementation

Table XVI illustrates the implemented operations as well as their signatures, descrip-

tor modifications, and runtime guarantees.

Table XVI. Vector - operations

Operations Descriptor (Desc) Complexity

push back Vector× Elem→ void Desct → Desct+1 O(1)× cong.

pop back Vector→ Elem Desct → Desct+1 O(1)× cong.

reserve Vector× size t→ Vector Desct → Desct O(1)

read Vector× size t→ Elem Desct → Desct O(1)

write Vector× size t× Elem→ Vector Desct → Desct O(1)

size Vector→ size t Desct → Desct O(1)

The remaining part of this section presents the generalized pseudo-code of the im-

177

plementation and omits code necessary for a particular memory management scheme.

We use the symbols ^, &, and . to indicate pointer dereferencing, obtaining an ob-

ject’s address, and integrated pointer dereferencing and field access respectively. The

function HighestBit returns the bit-number of the highest bit that is set in an inte-

ger value. On modern x86 architectures HighestBit corresponds to the BSR assembly

instruction. FBS is a constant representing the size of the first bucket and equals eight

in our implementation.

add one element to end: The first step is to complete a pending operation that the

current descriptor might hold. In case that the storage capacity has reached its limit,

new memory is allocated for the next memory bucket. Then, push back defines a new

“Descriptor” object and announces the current write operation. Finally, push back

uses CAS to swap the previous “Descriptor” object with the new one. Should CAS

fail, the routine is re-executed. After succeeding, push back finishes by writing the

element. Algorithm 4 shows push back’s pseudocode.

remove one element from end pop back does not utilize a “Write Descriptor”.

It completes any pending operation of the current descriptor, reads the last element,

defines a new descriptor, and attempts a CAS on the descriptor object. Pseudocode

for pop back is shown in Algorithm 9.

Non-bound checking Read and Write at position i: The random access read

(Algorithm 7) and write (Algorithm 8) do not utilize the descriptor and their success

is independent of the descriptor’s value.

reserve (increase allocated space): In the case of concurrently executing reserve

operations (Algorithm 10), only one succeeds per bucket, while the others deallocate

the acquired memory.

size (read number of elements): The size operation (Algorithm 6) returns the

size stored in the “Descriptor” minus a potential pending write operation at the end

178

of the vector.

Algorithm 4 lf::vector — PushBack vector, elem
1: repeat

2: desccurrent ← vector.desc

3: CompleteWrite(vector, desccurrent.writeop)

4: bucket← HighestBit(desccurrent.size+ FBS)−HighestBit(FBS)

5: if vector.memory[bucket] = NULL then

6: AllocBucket(vector, bucket)

7: end if

8: writeop← WriteDesc(At(desccurrent.size)^, elem, desccurrent.size)

9: descnext ← new Descriptor(desccurrent,+1, writeop)

10: until CAS(&vector.desc, desccurrent, descnext)

11: CompleteWrite(vector, descnext.writeop)

Algorithm 5 lf::vector — AllocBucket vector, bucket

1: bucketsize← FBSbucket+1

2: mem← new T [bucketsize]

3: if not CAS(&vector.memory[bucket], NULL,mem) then

4: Free(mem)

5: end if

VII.B.1.a. The ABA Problem

The ABA problem is fundamental to all CAS-based systems [125]. The semantics

of the lock-free vector’s operations can be corrupted by the occurrence of the ABA

problem. Consider the following execution: assume a thread T0 attempts to perform

a push back; in the vector’s “Descriptor”, push back stores a write-descriptor an-

179

Algorithm 6 lf::vector — Size vector

1: desc← vector.desc

2: size← desc.size

3: if desc.writeop.pending then

4: size← size− 1

5: end if

6: return size

Algorithm 7 lf::vector — Read vector, i

1: return At(vector, i)^

Algorithm 8 lf::vector — Write vector, i, elem

1: At(vector, i)^← elem

Algorithm 9 lf::vector — PopBack vector
1: repeat

2: desccurrent ← vector.desc

3: CompleteWrite(vector, desccurrent.writeop)

4: elem← At(vector, desccurrent.size− 1)^

5: descnext ← new Descriptor(desccurrent,−1)

6: until CAS(&vector.desc, desccurrent, descnext)

7: return elem

nouncing that the value of the object at position i should be changed from A to B.

Then a thread T1 interrupts and reads the write-descriptor. Later, after T0 resumes

and successfully completes the operation, a third thread T2 can modify the value at

position i from B back to A. When T1 resumes its CAS is going to succeed and er-

roneously execute the update from A to B. There are two particular instances when

the ABA problem can affect the correctness of the vector’s operations:

180

Algorithm 10 lf::vector — Reserve vector, size

1: i← HighestBit(vector.desc.size+ FBS− 1)−HighestBit(FBS)

2: if i < 0 then

3: i← 0

4: end if

5: while i < HighestBit(size+ FBS− 1)−HighestBit(FBS) do

6: i← i+ 1

7: AllocBucket(vector, i)

8: end while

Algorithm 11 lf::vector — At vector, i
1: pos← i+ FBS

2: hibit← HighestBit(pos)

3: idx← pos xor 2hibit

4: return &vector.memory[hibit−HighestBit(FBS)][idx]

Algorithm 12 lf::vector — CompleteWrite vector, writeop

1: if writeop.pending then

2: CAS(At(vector, writeop.pos), writeop.valueold, writeop.valuenew)

3: writeop.pending ← false

4: end if

1. the user intends to store a memory address value A multiple times.

2. the memory allocator reuses the address of an already freed object.

A universal solution to the ABA problem is to associate a version counter to each

element on platforms supporting CAS2. However, because of hardware requirements

of our primary application domain, we cannot currently assume availability of CAS2.

181

To eliminate the ABA problem of (2) (in the absence of CAS2), we have incor-

porated a variation of Herlihy et al.’s pass the buck algorithm [91] utilizing a separate

thread to periodically reclaim unguarded objects.

The vector’s vulnerability to (1) (in the absence of CAS2), can be eliminated by

requiring the data structure to copy all elements and store pointers to them. Such

behavior complies with the STL value-semantics [171], however it can incur significant

overhead in some cases due to the additional heap allocation and object construction.

In a lock-free system, both the object construction and heap allocation can execute

concurrently with other operations. However, for significant applications, our vector

can be used because the application programmer can avoid ABA problem (1). For

example, a vector of unique elements (e.g. a vector recording live or active objects)

does not suffer from this problem. Similarly, a vector that has a “growth phase” (using

push back) that is separate from a “write phase” (using assignment to elements) (e.g.,

an append-only vector) is safe. The testbed for goal driven autonomous software

exhibits such behavior. In order to prevent ABA from occurring, we can statically

detect source code that violates safe coding guidelines [58].

VII.C. Performance Evaluation

We ran performance tests on an Intel IA-32 SMP machine with two 1.83GHz processor

cores with 512 MB shared memory and 2 MB L2 shared cache running the MAC

OS 10.4.6 operating system. In our performance analysis, we compare the lock-free

approach (with its integrated lock-free memory management and memory allocation)

with the most recent concurrent vector provided by Intel [95] as well as an STL

vector protected by a lock. For the latter scenario we applied different types of

locking synchronizations - an operating system dependent mutex, a reader/writer

182

lock, a spin lock, as well as a queuing lock. We used this variety of lock-based

techniques to contrast our non-blocking implementation to the best available locking

synchronization technique for a given distribution of operations. We utilize the locking

synchronization provided by Intel [95].

Similarly to the evaluation of other lock-free concurrent containers [74, 123],

we have designed our experiments by generating a workload of various operations

(push back, pop back, random access write, and read). In the experiments, we var-

ied the number of threads, starting from 1 and exponentially increased their number

to 32. Every active thread executed 500,000 operations on the shared vector. We mea-

sured the CPU time (in seconds) that all threads needed in order to complete. Each

iteration of every thread executed an operation with a certain probability; push back

(+), pop back (-), random access write (w), random access read (r). We use per-

thread linear congruential random number generators where the seeds preserve the

exact sequence of operations within a thread across all containers. We executed a

number of tests with a variety of distributions and found that the differences in the

containers’ performances are generally preserved. As discussed by Fraser [74], it has

been observed that in real-world concurrent applications, the read operations domi-

nate and account to about 70% to 75% of all operations. For this reason we illustrate

the performance of the concurrent vectors with a distribution of +:15%, -:5%, w:10%,

r:70% on Fig. 16A. Similarly, Fig. 16C demonstrates the performance results with a

distribution containing predominantly writes, +:30%, -:20%, w:20%, r:30%. In these

diagrams, the number of threads is plotted along the x-axis, while the time needed to

complete all operations is shown along the y-axis. Both axes use logarithmic scale.

The current release of Intel’s concurrent vector does not offer pop back or any

alternative to it. To include its performance results in our analysis, we excluded the

pop back operation from a number of distributions. Fig. 16B and Fig. 16D present two

183

Fig. 16. Performance results - Intel Core Duo

of these distributions. For clarity we do not depict the results from the QueuingLock

and SpinLock implementations. According to our observations, the QueuingLock

performance is consistently slower than the other lock-based approaches. As indicated

in [95], SpinLocks are volatile, unfair, and not scalable. They showed fast execution

for the experiments with 8 threads or lower, however their performance significantly

deteriorated with the experiments conducted with 16 or more active threads. To find

a lower bound for our experiments we timed the tests with a non-thread safe STL-

vector with pre-allocated memory for all operations. For example, in the scenario

described in Fig. 16D, the lower bound is about a 1
10

of the lock-free vector.

Under contention our non-blocking implementation consistently outperforms the

alternative lock-based approaches in all possible operation mixes by a significantly

large factor. It has also proved to be scalable as demonstrated by the performance

184

analysis. Lock-free algorithms are particularly beneficial to shared data under high

contention. It is expected that in a scenario with low contention, the performance

gains will not be as considerable.

Fig. 17. Performance results - alternative memory management

We have incorporated two different memory management approaches with our

lock-free implementation, namely Michael and Scott’s reference counting scheme (Re-

fCount) [126] and Herlihy et al.’s pass the buck technique (PTB) [91]. We have evalu-

ated the vector’s performance with these two different memory management schemes

(Fig. 17).

Fig. 18. Performance results - AMD 8-way Opteron

On systems without shared L2 cache, shared data structures suffer from perfor-

185

mance degradation due to cache coherency problems. To test the applicability of our

approach on such architecture we have performed the same experiments on an AMD

2.2GHz quad dual core Opteron architecture with 1 MB L2 cache and 4GB shared

RAM running the MS Windows 2003 operating system. (Fig. 18). The applied lock-

free memory allocation scheme is not available for MS Windows. For the sake of our

performance evaluation we applied a regular lock-based memory allocator. The ex-

perimental results on this architecture lack the impressive performance gains we have

observed on the dual-core L2 shared-cache system. However, the graph (Fig. 18)

demonstrates that the performance of our lock-free approach on such architectures is

comparable to the performance of the best lock-based alternatives.

VII.D. Future Work

In concurrent programs, the access of shared data structures is often guarded by fine-

grained mutual exclusion locks. As discussed, the application of such locks can lead

to problems not present in non-blocking implementations. To address such problems,

we will apply our rejuvenation toolchain to the detection and replacement of lock

based container implementations with one lock-free implementations.

186

CHAPTER VIII

TEMPLATE ANALYSIS AND CONCEPT EXTRACTION

The choice of requirements for an argument of a generic type or algorithm is a cen-

tral design issue in generic programming. In the context of C++, a specification of

requirements for a template argument or a set of template arguments is called a

concept.

In this dissertation, we present a novel tool, TACE (template analysis and con-

cept extraction), designed to help programmers understand the requirements that

their code de facto imposes on arguments and help simplify and generalize those

through comparisons with libraries of well-defined and precisely-specified concepts.

TACE automatically extracts requirements from the body of template functions.

These requirements are expressed using the notation and semantics developed by

the ISO C++ standards committee. TACE converts implied requirements into con-

cept definitions and compares them against concepts from a repository. Components

of a well-defined library exhibit commonalities that allow us to detect problems by

comparing requirements from many components: Design and implementation prob-

lems manifest themselves as minor variations in requirements. TACE points to source

code that cannot be constrained by concepts and to code where small modifications

would allow the use of less constraining concepts. For people who use a version of

C++ with concept support, TACE can serve as a core engine for automated source

code rejuvenation.

VIII.A. Introduction

A fundamental idea of generic programming is the application of mathematical prin-

ciples to the specification of software abstractions [169]. ISO C++ [97, 171] supports

187

generic programming through the use of templates. Unfortunately, it does not di-

rectly support the specification of requirements for arguments to generic types and

functions [170]. However, research into language-level support for specifying such

requirements, known as concepts, for C++ has progressed to the point where their

impact on software can be examined [83, 27, 84]. Our work is aimed at helping

programmers cope with the current lack of direct support for concepts and ease the

future transition to language-supported concepts.

Templates are a compile-time mechanism to parameterize functions and classes

over types and values. When the concrete template argument type becomes known to

the compiler, it replaces the corresponding type parameter (template instantiation),

and type checks the instantiated template body. This compilation model is flexible,

type safe, and can lead to high performance code [63]. For over a decade, C++

templates have helped deliver programs that are expressive, maintainable, efficient,

and organized into highly reusable components [172]. Many libraries, such as the

C++ Standard Template Library (STL) [15], the BOOST graph library [161], and the

parallel computation system, STAPL [13], for which adaptability and performance

are paramount, rest on the template mechanism.

C++ currently does not allow the requirements for the successful instantiation of

a template to be explicitly stated. Instead, such requirements must be found in docu-

mentation or inferred from the template body. For attempts to instantiate a template

with types that do not meet its requirements, current compilers often fail with error

messages that are hard to understand [83]. Also, C++ provides only weak support

for overloaded templates. A number of programming techniques [1][9][102][160] offer

partial solutions to these problems, but they tend to raise the level of complexity of

template implementations and can make programs harder to understand.

Concepts [83][27][84] were developed to provide systematic remedies and deliver

188

better support for the design and development of generic programs. As defined for

C++0x, concepts improve expressiveness, make error messages more precise, and pro-

vide better control of the compile-time resolution of templates. Importantly, the use

of concepts does not incur runtime overhead when compared to templates not using

concepts. However, despite many years design efforts, implementation work, and ex-

perimental use, concerns about usability, scalability, and the time needed to stabilize

a design prevented concepts from being included as a language mechanism in the

next revision of C++ [176][175]. However, we are left with a notation and a set of

concepts developed for the STL and other libraries that can be used to describe and

benchmark our use of design-level concepts.

In this paper, we present a novel tool for template analysis and concept extrac-

tion, TACE, that addresses some of these concerns. TACE extracts concept require-

ments from industrial strength C++ code and helps apply concepts to unconstrained

templated code. This dissertation offers the following contributions:

• a strategy for evolving generic code towards greater generality, greater unifor-

mity, and more precise specification.

• type level evaluation of uninstantiated template functions and automatic ex-

traction of sets of requirements on template arguments.

• concept analysis that takes called functions into account.

Experience with large amounts of generic C++ code and the development of C++

generic libraries, such as the generic components of the C++0x standard library [25]

shows that the source code of a class template or a function template is not an

adequate specification of its requirements. Such a definition is sufficient for type safe

code generation, but even expert programmers find it hard to provide implementations

189

that do not accidentally limit the applicability of a template (compared to its informal

documentation). It is also hard to precisely specify template argument requirements

and to reason about those.

Consequently, there is wide agreement in the C++ community that a formal

statement of template argument requirements in addition to the template body is

required. Using traditional type deduction techniques [6] modified to cope with C++,

TACE generates such requirements directly from the code to enable the programmer

to see the implications of implementation decisions. Furthermore, the set of concepts

generated from an implementation is rarely the most reusable or the simplest. To help

validate a library implementation TACE compares the generated (implied) concepts

to pre-determined set of library concepts.

Fig. 19. The TACE tool chain

Fig. 19 shows TACE’s tool chain. TACE utilizes the Pivot source-to-source trans-

formation infrastructure [64] to collect and analyze information about C++ template

functions. The Pivot’s internal program representation preserves high-level informa-

tion present in the source code - it represents uninstantiated templates and is ready

for concepts. TACE analyzes expressions, statements, and declarations in the body

of template functions. Since function instantiations do not have to be present, TACE

190

can operate on modularily defined template libraries. It evaluates the template body

on the type level and extracts the requirements on template arguments. TACE alerts

programmers about code where a requirement cannot be modeled with concepts. It

merges the requirements with requirements extracted from functions that the tem-

plate body potentially invokes. The resulting sets of requirements can be written

out as concept definitions. TACE does not try to discover semantic properties of a

concept (“axioms” [65]. In general, doing so is beyond the scope of static analysis.

Our experiments demonstrate that TACE can extract requirements from indi-

vidual functions. However, our goal is to find higher-level concepts that prove useful

at the level of the design of software libraries. In particular, we do not just want to

find the requirements of a particular implementation of an algorithm or the absolute

minimal set of requirements. We want to discover candidates for concepts that are

widely usable in interface specifications for algorithms. To recognize such concepts

we need the “advice” of an experienced human. TACE achieves this by matching the

extracted sets of requirements against concepts stored in a concept repository (e.g.,

containing standard concepts). In addition to reporting matches, the tool also reports

close misses. In some cases, this allows programmers to reformulate their code to fa-

cilitate types that model a weaker concept. Our test results for STL indicate that

our tool is effective when used in conjunction with a concept repository that contains

predefined concepts.

VIII.B. Concepts for C++

Concepts as designed for C++0x [27, 83, 84] provide a mechanism to express con-

straints on template arguments as sets of syntactic and semantic requirements.

191

Syntactic requirements describe requirements such as associated functions, types,

and templates that are necessary for the template instantiation to succeed. Consider

the following template, which determines the distance between two iterators:

template<typename Iterator>
size t distance(Iterator first, Iterator last) {

size t n = 0;
while (first != last) { ++first; ++n; }
return n;
}

The function distance requires types that substitute for the type parameter Iterator

have a copy constructor (to copy the arguments), an inequality (!=) operator, and

an increment (++) operator. A requirement’s argument type can be derived from the

source code. Requirements can be stated using a C++ function signature like notation.

concept DistanceRequirements<typename T> {
T::T(const T&); // copy constructor
bool operator!=(T, T);
void operator++(T);
}

In order not to over-constrain templates, function signatures of types that model the

concept need not match the concept signature exactly. C++’s pseudo signatures allow

automatic conversions of argument types. This means that an implementation of

operator!= can accept types that are constructable from T.

The return type of a functional requirement has to be named but can remain

unbound. The following example shows a function with two parameters of type T,

where T is a template argument constrained by the concept TrivialIterator. The

function tests whether the return values of the operator* are equal. The type of the

return values is irrelevant as long as there exists an operator== that can compare

the two. The result type of the equality comparison must be convertible to bool.

template <TrivialIterator T>
bool same elements(T lhs, T rhs) {
return (∗lhs == ∗rhs);
}

192

Concepts introduce associated types to model such types. The following concept def-

inition of TrvialIterator introduces such an associated type ValueType to specify

the return type of operator*. Associated types can be constrained by nested re-

quirements (e.g., the requires clause).

concept TrivialIterator<typename T> {
typename ValueType;

// nested requirements
requires EqualityComparable<ValueType>; // operator== of ValueType

ValueType operator∗(T); // deref operator∗
. . .
}

The compiler will use the concept definitions to type check expressions, decla-

rations, and statements of the template body without instantiating it. Any type (or

combination of types) that defines the required operations and types is a model of

the concept. Those types can be used to instantiate the template bodies.

Semantic requirements describe behavioral properties, such as the equivalence of

operations or runtime complexity. Types that satisfy the semantic requirements are

guaranteed to work properly with a generic algorithm. Axioms model some behavioral

properties. Axioms can specify the equivalence of operations. The two operations are

separated by an operator <=>. In the following example, the axiom indirect deref

specifies that the operations of the left and right side of <=> produce the same result.

This is the case for pointers or random access iterators. Compilers are free to use

axioms for code optimizations.

concept Pointer<typename T> {
typename data;
data operator∗(T);
T operator+(T, size t);
data operator[](T, size t);

axiom indirect deref(T t, size t n) {
t[n] <=> ∗(t+n);
}
}

193

Concepts can extend one or more existing concepts and add new requirements.

Any requirement of the “base” concept remains valid for its concept refinements. For

example, consider a trivial iterator abstraction, which essentially defines an operation

to access its element (operator*). The concept ForwardIterator adds operations

to traverse a sequential data structure in one way (from the beginning to an end).

concept ForwardIterator<typename T> {
requires TrivialIterator<T>;
. . .
}

Concept refinements are useful for the implementation of a family of generic

functions. A base implementation constrains its template arguments with a gen-

eral concept, while specialized versions exploit the stronger requirements of concept

refinements to provide more powerful or more efficient implementations. Consider,

the STL algorithm advance(Iter, Size) for which three different implementations

exist. Its basic implementation is defined for input-iterators and has runtime com-

plexity O(Size). The version for bidirectional-iterators can handle negative distances,

and the implementation for random access improves the runtime complexity to O(1).

The compiler selects the implementation according to the concept a specific type

models [100].

In current C++, programmers resort to a combination of trait classes [132], tag

dispatching [1], or substitution failure is not an error (SFINAE) based techniques [102]

to exert influence on the overload resolution.

Concepts can be used to constrain template arguments of stand-alone functions.

In such a scenario, the extracted concept requirements reflect the function imple-

mentation directly. In the context of template libraries, clustering similar sets of re-

quirements yields reusable concepts, where each concept constrains a family of types

that posses similar qualities. Clustering requirements results in fewer and easier to

194

comprehend concepts and makes concepts more reusable. An example of concepts,

refinements, and their application is STL’s iterator hierarchy, which groups iterators

by their access capabilities.

Concept requirements are bound to concrete operations and types by the means

of concept maps. Concept maps can be automatically generated. Should a type’s

operations not exactly match the requirement definition (e.g., when a function is

named differently), concept maps allow for an easy adaptation [101].

VIII.C. Requirements Extraction

TACE extracts individual concept requirements from the body of template functions

by infering properties of types from declarations, statements, and expressions. Simi-

lar to the usage pattern style of concept specification [63], we derive the requirements

by reading C++’s evaluation rules [62] backwards. We say backwards, because reg-

ular type checking tests whether expressions, statements, and declarations together

with type (concept) constraints result in a well-typed program. In this work, we

start with an empty set of constraints and derive the type (concept) constraints that

make type-checking of expressions, statements, and declarations succeed. The derived

constraints (ζ) reflect functional requirements and associated typenames.

VIII.C.1. Evaluation of Expressions

A functional requirement op(arg1, . . . , argn) → res is similar to a C++ signature.

It consists of a list of argument types (arg) and has a result type (res). Since the

concrete type of template dependent expressions is not known, the evaluator classifies

the type of expressions into three groups:

Concrete types: this group comprises all types that are legal in non template

195

context. It includes built-in types, user defined types, and templates that have been

instantiated with concrete types. We denote types of this class with C.

Named template dependent types: this group comprises named but not yet known

types (i.e., class type template parameters, dependent types, associated types, and in-

stantiations that are parametrized on unknown types), and their derivatives. Deriva-

tives are constructed by applying pointers, references, const and volatile qual-

ifiers on a type. Thus, a template argument T, T*, T**, const T, T&, typename

traits<T>::value type are examples for types grouped into this category. We de-

note types of this class with T .

Requirement results: This group comprises fresh type variables. They occur

in the context of evaluating expressions where one or more subexpressions have a

non concrete type. The symbol R denotes types of this class. The types R are

unique for each operation, identified by name and argument types. Only the fact that

multiple occurrences of the same function must have the same return type, enables

the accumulation of constraints on a requirement result. (e.g., the STL algorithm

search contains two calls to find).

In the ensuing description, we use N for non concrete types (T ∪ R) and A for

any type (N ∪ C). For each expression, the evaluator yields a tuple consisting of

the return type and the extracted requirements. For example, expr : C, ζ denotes an

expression that has a concrete type and where ζ denotes the requirements extracted

for expr and its subexpressions. We use X Y to denote type X is convertible

to type Y . Table XVII shows TACE’s evaluation rules of expressions in a template

body.

A concrete expression (expr) is an expression that does not depend on any tem-

plate argument (e.g., literals, or expressions where all subexpressions (s) have concrete

type). The result has a concrete type. The direct subexpressions have concrete types,

196

T
ab

le
X

V
II

.
E

va
lu

at
io

n
ru

le
s

fo
r

ex
p
re

ss
io

n
s

co
n
cr

et
e

ex
p
re

ss
io

n
Γ

e
x
p `
s 1

:C
1
,ζ

1
..
.
s n

:C
n
,ζ

n

Γ
e
x
p `
ex
p
r(
s 1
,
..
.,
s n

):
C

e
x
p
r
,

⋃
1
≤
i≤

n

ζ i

u
n
b

ou
n
d

fu
n
ct

io
n

Γ
e
x
p `
s 1

:A
1
,ζ

1
..
.
s n

:A
n
,ζ

n

Γ
e
x
p `
u
f

(s
1
,.
..
,s

n
):
R

u
f
(s
1
,

..
.

s
n
)
,

⋃
1
≤
i≤

n

ζ i
∪{
u
f

(A
1
,
..
.
,A

n
)→

R
u
f
(s
1
,

..
.

s
n
)
}

b
ou

n
d

fu
n
ct

io
n

Γ
e
x
p `
(b
f

:(
A

b
f

1
,.
..
,A

b
f

n
)→

A
b
f

r
)
s 1

:A
1
,ζ

1
..
.
s n

:A
n
,ζ

n

Γ
e
x
p `
f
n

(s
1
,
..
.,
s n

):
A

b
f

r
,

⋃
1
≤
i≤

n

ζ i
∪{
A

i
A

b
f

i
}

co
n
d
it

io
n
al

op
er

at
or

Γ
e
x
p `
s 1

:A
1
,ζ

1
s 2

:A
2
,ζ

2
s 3

:A
2
,ζ

3

Γ
e
x
p `
(s

1
?s

2
:s

3
):
A

2
,

⋃
1
≤
i≤

3

ζ i
∪{
A

1

bo
ol
}

m
em

b
er

fu
n
ct

io
n
s

Γ
e
x
p `
o:
A

o
,ζ

o
s 1

:A
1
,ζ

1
s n

:A
n
,ζ

n

Γ
e
x
p `
o.
u
f

(s
1
,.
..
,s

n
):
R

u
f

(o
,s
1
,

..
.

s
n
)
,ζ

o
∪

⋃
1
≤
i≤

n

ζ i
∪{
u
f

(A
o
,A

1
,
..
.
,A

n
)→

R
u
f
(o

,s
1
,

..
.

s
n
)
}

n
on

co
n
cr

et
e

ar
ro

w
Γ

e
x
p `
o:
A

o
,ζ

o

Γ
e
x
p `
o-
>
:R

-
>
o
,{
op
er
a
to
r-
>
(A

o
)→

R
-
>
o
}

st
at

ic
ca

st
Γ

e
x
p `
A

tg
t
,ζ

tg
t
o:
A

o
,ζ

o

Γ
e
x
p `
A

tg
t
,{
A

o

A

tg
t
}

d
y
n
am

ic
ca

st
Γ

e
x
p `
A

tg
t
,ζ

tg
t
o:
A

o
,ζ

o

Γ
e
x
p `
A

tg
t
,{
P
ol
y
m
or
p
h
ic
C
la
ss
<
A

o
>
}

ot
h
er

ca
st

s
Γ

e
x
p `
A

tg
t
,ζ

tg
t
o:
A

o
,ζ

o

Γ
e
x
p `
A

tg
t
,{
}

197

but indirect subexpressions can be template dependent (e.g., sizeof(T)). Thus, ζ is

the union of subexpression requirements.

Calls to unbound functions (uf) (and unbound overloadable operators, construc-

tors, and destructor) have at least one argument that depends on an unknown type N .

Since uf is unknown, its result type is denoted with a fresh type variable Ruf (s1, ... sn).

Bound functions are functions, where the type of the function can be resolved at

the compile time of the template body. Examples of bound functions include calls to

member functions, where the type of the receiver object is known, and calls, where

argument dependent lookup [97] is suppressed. Calls to bound functions (bf) have

the result type of the callee. bf’s specification of parameter and return types can add

conversion requirements to ζ (i.e., when the type of a subexpression differs from the

specified parameter type and when at least one of these types is not concrete.)

The conditional operator (?:) cannot be overloaded. The ISO standard definition

requires the first subexpression be convertible to bool. TACE’s evaluation rules

require the second and the third subexpression to be the same type. Here TACE is

currently stricter than the ISO C++ evaluation which allows for a conversion of one

of the result types.

The other not overloadable operators (i.e., typeid and sizeof) have a concrete

result type. The set of extracted requirements is the same as for their subexpressions

and type names.

C++ concepts do not support modeling of member variables. Thus the application

of a member selection (i.e, the dot or arrow operator can only refer to a member

function name. The evaluator rejects any dot expression that occurs not in the context

of evaluating the receiver of a call expression.

For non concrete objects, the evaluator treats the arrow as a unary operator

that yields an object of unknown result type. The object becomes the receiver of a

198

Table XVIII. Evaluation rules for declarations and statements

statement context
Γ

stmt

` τ∈N,s:A,ζ
ε,ζ+A τ

default ctor
Γ

decl

` o:(Γ,τ∈No)

Γ
decl

` o:τ,{τ ::ctor()}

single argument ctor
Γ

decl

` o:(Γ,τ∈No),s1:A1,ζ1

Γ
decl

` o:τ,ζ1+τ ::ctor(constτ&)+A0 τ

constructor
Γ

decl

` o:(Γ,τ∈No),s1:A1,ζ1, ..., sn:An,ζn

Γ
decl

` o:τ,
⋃

1≤i≤n

ζi+τ ::ctor(A1, ..., An)

parameter
Γ

decl

` p:(Γ,τ∈No)

Γ
decl

` p:τ,{τ ::ctor(A1, ..., An)}

subsequent call to an unbound member function.

Cast expressions are evaluated according to the rules specified in Table XVII.

The target type of a cast expression is also evaluated and can add dependent name

requirements to ζ. A static cast requires the source type be convertible to the

target type. A dynamic cast requires the source type to be a polymorphic class

(PolymorphicClass is part of C++ with concepts).

The evaluation of operations on pointers follows the regular C++ rules, thus the

result of dereferencing T∗ yields T&, the arrow operator yields a member function

selection of T , taking the address of T∗ yields T**, and any arithmetic expression on

T∗ has type T∗. Variables in expressions are typed as lvalues of their declared type.

VIII.C.2. Evaluation of Declarations and Statements

Statements and declarations are evaluated according to the rules shown in Table XVIII.

Statements: The condition expressions of if, while, for require the expres-

sion to be convertible to bool. The return statement requires convertibility of the

expression to the function return type. The expression of the switch statement is

199

either convertible to signed or unsigned integral types. We introduce an artificial

type Integer that subsumes both types. The type will be resolved later, if more

information becomes available.

Object declarations: Variable declarations of object type require the presence of

a constructor. Constructions with a single argument (i.e., T t = arg) are modeled

to require Aarg T and a copy constructor on T .

References: Bindings to lvalue (mutable) references (i.e., declarations, function

calls, and return statements) imposer stricter requirements. Instead of convertibility,

they require the result type of an expression be an exact type (instead of a convertible

type).

VIII.C.3. Evaluation of Class Instantiations

The current implementation focuses on extracting requirements from functions, and

thus treats any instantiation of classes that have data members and where the tem-

plate parameter is used as template argument as concrete type (e.g. pair,

reverse iterator); ζ remains unchanged. To allow the analysis of real world C++

template functions, TACE analyzes classes that contain static members (types, func-

tions, and data). Particularly, trait classes can add dependent type requirements to

ζ. For example, the instantiation of iterator traits<T>::value type leads to the

type constraint T::value type.

Static (templated) member functions of templated classes (e.g.: the various vari-

ants of sort) are treated as if they were regular template functions. The template

parameters of the surrounding class extend the template parameters of the member

function. For example:

template <class T>
struct S { template <class U> static T bar(U u); };

200

template<typename FwdIter1, typename FwdIter2>
FwdIter1
search(FwdIter1 first1, FwdIter1 last1,

FwdIter2 first2, FwdIter2 last2) {

if (first1 == last1 || first2 == last2)
return first1;

FwdIter2 tmp(first2);
++tmp;
if (tmp == last2)
return find(first1, last1, ∗first2);

FwdIter2 p1, p;
p1 = first2;
++p1;
FwdIter1 current = first1;
while (first1 != last1) {

first1 = find(first1, last1, ∗first2);
// . . .

concept Search <typename FwdIter1,
typename FwdIter2> {

// argument construction
FwdIter1::FwdIter1(const FwdIter1&);
FwdIter2::FwdIter2(const FwdIter2&);

// if statement and return
typename r1;
r1 operator==(FwdIter1&, FwdIter1&);
typename r2;
r2 operator==(FwdIter2&, FwdIter2&);
typename r3;
r3 operator||(r1, r2);
operator bool(r3);

// second range has length 1
r5 operator++(FwdIter2&);
operator bool(r2);
typename r7;
r7 operator∗(FwdIter2&);
typename r8;
r8 find(FwdIter1&, FwdIter1&, r7);
operator FwdIter1(r8);

// while loop
FwdIter2::FwdIter2(); // default constructor
void operator=(FwdIter2&, FwdIter2&);
typename r12;
r12 operator!=(FwdIter1&, FwdIter1&);
operator bool(r12);
void operator=(FwdIter1&, r8);
// . . .

Fig. 20. Requirement extraction

is treated as:

template <class T, class U> T bar(U u);

VIII.C.4. Examples

We use the beginning of GCC’s implementation (4.1.3) of the STL function search

to illustrate our approach. Fig. 20 shows a portion of the implementation and the

requirements that get extracted from it.

We begin by extracting the requirements from the argument list. Their types

are FwdIter1 and FwdIter2. They are passed by value. According to the evaluation

rule for parameters, their type has to support copy construction.

The condition of the if statement is evaluated bottum up. The right hand

201

side of the operator|| is an equality comparison (operator==) of two parameters

of type FwdIter1&. Since FwdIter1 is an unknown type, the operation is evalu-

ated according to the unbound function rule. The result type of the operation is a

fresh type variable (r1). The set of requirements consists of the equality comparison

operator==(FwdIter1&, FwdIter1&) → r1. Similarily, the evaluation of the com-

parison of first2 and last2 yields r2 and the requirement

operator==(FwdIter2&, FwdIter2&)→ r2

The evaluation proceeds with the operator||. Both arguments have an undeter-

mined type (r1 and r2). Thus, the operation is evaluated according to the unbound

function rule. The result type is r3. operator==(r1, r2)→ r3 and the requirements

extracted from the subexpressions form the set of requirements. r3 is evaluated by

an if statement. According to the rule statement context, r3 has to be convertible to

bool.

The return statement does not produce any new requirement, because the copy

constructor of FwdIter1 is already part of ζsearch.

The next source line declares a local variable tmp. Its initial value is constructed

from a single argument of the same type. Thus, this line requires a copy constructor

on FwdIter2 (evaluation rule for constructors).

The next line moves the iterator tmp forward by one. The source line is evalu-

ated according to the unbound function rule. The return type is r5, the extracted

requirement is operator++(FwdIter2&)→ r5.

The expression of the following if statement compares two expressions of type

FwdIter2&. Unification with the already extracted requirements in ζsearch yields

the result type r2. Evaluating r2 according to the statement context rule yields an

additional conversion requirement r2 bool.

The next line of code returns the result of a function call. First, the argument

202

list of the call is processed. The first two arguments are references to parameters

of type FwdIter1; the third argument dereferences a parameter of type FwdIter2.

According to the unbound function rule, this expression yields to a new result type

r7 and the requirement operator*(FwdIter2&) → r7. Then TACE applies the

unbound function rule to the function call itself. This yields the result type r8 and the

requirement find(FwdIter1&, FwdIter1&, r7)→ r8. From the statement context,

we infer r8 FwdIter1.

From the declarations of p1 and p, FwdIter2 is required to support default

construction (FwdIter2::FwdIter2()).

We skip the remaining code and requirements.

VIII.D. From Requirements to Concepts

This section discusses the analysis and manipulation of the extracted requirements

with the goal to print out function specific concepts.

VIII.D.1. Function Calls

Consider the requirements that were extracted from search (§VIII.C.4). It contains

two calls to a function find, an unbound non-member call that potentially (or likely)

resolves to STL’s templated function. We have a choice, how we can handle such

functions.

• A simplistic approach (§VIII.C.4) could print the concept Search and represent

the calls to find as functional requirement.

typename r8;
r8 find(FwdIter1&, FwdIter1&, r7);
operator FwdIter1(r8);
void operator=(FwdIter1&, r8);

• Another approach would replace the requirements related to find with a simple

203

refinement clause, and eliminate the requirements on r8 (the conversion requirement

becomes obsolete, and operator=(FwdIter1, FwdIter1) already exists in search).

requires Find<FwdIter1, r7>;

Both approaches lead to (deeply) nested requirements. Search does not expose

the requirements on FwdIter1 (or on the combination of FwdIter1 with r7) that

stem from Find. Thus, we would expect requirement errors that stem from deeply

nested templated function calls to remain hard to understand for programmers.

• TACE’s approach is to merge the requirements of the callee into the caller, if a

callee exists. A callee exists, when there is a template function with the same name

defined in the same namespace, and when that function’s parameter are at least as

general as the arguments of the call expression. (e.g., search calls find).

VIII.D.2. Result Type Reduction

In the extracted set of requirements, any result of an operation is represented as an

unnamed type requirement (i.e., associated types such as r1 and r2 in §VIII.C.4).

However, the evaluation context contributed more information about these types in

the form of conversion requirements. TACE invokes a function reduce that propagates

the target types of conversions.

reduce(ζ)→ ζ ′

Should a requirement result have more than one conversion targets (for example,

an unbound function was evaluated in the context of bool and int), we apply the

following subsumption rule: assuming n conversion requirements with the same input

type (R) but distinct target types Ai.

204

R′ =

 Aj if ∃j∀i such that Aj Ai

R otherwise

Note, that the Aj Ai must be part of ζ, or defined for C++ built in types. If such

an Aj exists, all operations that depend on R are updated, and become dependent on

Aj. Any conversion requirement on R is dropped from ζ. When R is not evaluated

by another function it gets the result type void. If R is evaluated by another expres-

sion, but no conversion requirement exists, the result type R′ remains unnamed (i.e.,

becomes an associated type).

After the return type has been determined, the new type R′ is propagated to

all operations that use it as argument type. By doing so, the set of requirements

can be further reduced (e.g., if all argument types of an operation are in C, the

requirement can be eliminated, or in case the operation does not exist, an error

reported) and more requirement result types become named (if an argument type

becomes T , another operation on T might already exist). Reduction is a repetitive

process that stops when a fixed point is reached. The size of the reduction depends

on how much context information is available in code.

For example, reduce reduces the set of requirements that we got from merging search

and find:

concept search <typename FwdIter1, typename FwdIter2> {
FwdIter1::FwdIter1(const FwdIter1&);
FwdIter2::FwdIter2(const FwdIter2&);
bool operator==(FwdIter1&, FwdIter1&);
bool operator==(FwdIter2&, FwdIter2&);
typename r4;
r4 operator++(FwdIter2&);
typename r5;
r5 operator∗(FwdIter2&);
FwdIter2::FwdIter2();
void operator=(FwdIter2&, FwdIter2&);
bool operator!=(FwdIter1&, FwdIter1&);

205

void operator=(FwdIter1&, FwdIter1&);
typename r11;
r11 operator++(FwdIter1&);
bool operator==(r11, FwdIter1&);
typename r13;
r13 operator∗(FwdIter1&);
bool operator==(r13, r5);
bool operator==(r4, FwdIter2&);

typename r529; // from find
r529 operator==(r13, const r5&);
typename r530;
r530 operator!(r529);
bool operator&&(bool, r530);
}

Due to the presence of the conversion operator FwdIter1(r8), FwdIter1& substi-

tutes for r8 in void operator=(FwdIter1&, r8). Similar r1 and r2 become con-

vertible to bool, thus the requirement r3 operator‖(r1, r2); is dropped.

The result of reduce may constrain the type system more than the original set

of requirements. Thus, reduce has to occur after merging all requirements from

potential callees, when all conversion requirements on types are available.

VIII.E. Concept Matching with Repository

Template libraries utilize concepts to constrain the template arguments of a group

of functions that operate on types with similar capabilities. To make this manage-

able in real code, this requires clustering similar sets of requirements into relatively

few concepts. These concepts then provide a design vocabulary for the application

domain of the library and help provide a degree of pluggability among algorithms

and types. We tackle this by using a concept repository, which contains a number

of predefined concept definitions (e.g., core concepts or concepts that users define for

specific libraries). The use of a concept repository offers users the following benefits:

• reduces the number of concepts

206

• improves the structure of concepts

• exposes the refinement relationships of concepts, which allows for more exact

analysis

• replaces requirement results with named types (concrete, template dependent,

or associated typenames)

The repository we use to drive the examples in this sections contains the

following concepts: IntegralType<T>, RegularType<T>, TrivialIterator<T>,

ForwardIterator<T>, BidirectionalIterator<T>, RandomaccessIterator<T>,

and EqualityComparable<T>. IntegralType specifies operations that are defined

on type int. RegularType specifies operations that are valid for all built-in types

(i.e., default construction, copy construction, destruction, assignment, equality com-

parison, and address of). TrivialIterator specifies the dereference operation and

associated iterator types. The other iterators have the operations defined in the STL.

VIII.E.1. Concept Kernel

In order to match the extracted requirements of each template argument against

concepts in the repository that depend on fewer template arguments, we partition

the unreduced set into smaller sets called kernels. We define a concept kernel over a

set of template arguments T̂ to be a subset of the original set of requirements ζ.

kernel(ζfunction, T̂)→ ζkernel

ζkernel is a projection that captures all operations on types that directly or indi-

rectly originate from the template arguments in T̂ .

ζkernel ⇔ {op|op ∈ ζsrc, φT̂ (op)}

207

For the sake of brevity, we also say that a type is in ζkernel, if the type refers to

a result R of an operation in ζkernel.

φT̂ (op) =

1 true for a op(arg1, . . . , argn)→ res

if ∀i argi ∈ T̂ ∪ ζkernel ∪ C

0 otherwise

φT̂ (op) is true, if all arguments of op either are in T̂ , are result types from

operations in ζkernel, or are concrete.

As an example, we give the concept kernel for the first template argument of

search.

FwdIter1::FwdIter1(const FwdIter1&);
typename r1652;
r1652 operator==(FwdIter1&, FwdIter1&);
typename r1654;
r1654 operator!=(FwdIter1&, FwdIter1&);
operator bool (r1654);
operator bool (r1652);
void operator=(FwdIter1&, FwdIter1&);
typename r1658;
r1658 operator++(FwdIter1&);
typename r1659;
r1659 operator==(r1658, FwdIter1&);
operator bool (r1659);
typename r1661;
r1661 operator∗(FwdIter1&);

VIII.E.2. Concept Matching

For each function, TACE type checks the kernels against the concepts in the repos-

itory. The mappings from a kernel’s template parameters to a concept’s template

parameters are generated from the arguments of the first operation in a concept ker-

nel and the parameter declarations of operations with the same name in the concept.

Matching the requirements against the definitions in the concept repository

208

is similar to the Hindley-Milner-Damas (HMD) type inference for functional lan-

guages [55]. The HMD algorithm and its variations derive a type scheme for untyped

entities of a function from type annotations and the utilization of these entities in

the context of defined functions. Wadler and Blott [191] discuss problems of type

inference for ad-hoc polymorphic functions in languages that support overloaded op-

erators. They discuss a number of solutions that have been utilized by various func-

tional languages. Subsequently, Wadler and Blott develop the notion of a type class

as a structured solution to the problem. A type class defines (overloaded) operations

for a set of types. Any type that provides the specified operations can become an

instance of the type class. Peterson and Jones [140] present an extension to the HMD

algorithm, which utilizes type classes to derive an unambiguous type scheme for poly-

morphic functions. Jones [103] formalizes the definition of Haskell’s type inference

algorithm by providing an implementation in Haskell.

We describe the necessary adaptations for checking C++ template functions against

concept definitions below:

• C++ template code follows regular C++ programming style, where variables have

to be declared before they can be used. The type of a variable can be template

argument dependent. The types of variable declarations is useful for the res-

olution of for overloaded function requirement (e.g., random access iterator’s

subtraction and difference requirement).

• C++’s type system allows type coercions. Based on C++ binding rules and con-

version (and constructor) requirements that are defined in the concept, TACE

generates all possible type combinations that a specific function requirement can

handle. For example, if a signature is defined over const T& another signature

for T& is added to the concept. Consequently, checking whether a requirement

209

kernel is expressible by a concept in the repository relies on signature unifica-

tion. The result type of a function is inferred from the requirement specification

in the repository.

• in C++, type checking of expressions is context dependent. The disambiguation

of overloaded functions relies on context information. For a call, the argument

list provides this context. In an assignment to a function pointer, the type

of the pointer determines the function type. When code suppresses argument

dependent lookup, the rules become more subtle. In this circumstance, the

overload set only contains functions that were available at template definition

time.

• Haskell type checking utilizes context reduction. For example, an equality im-

plementation on lists may require that the list elements be comparable. Extend-

ing TACE with context reduction would be useful for deriving requirements from

templated data-structures (see §VIII.C.3).

For any requirement in the kernel, a concept has to contain a single best matching

requirement (multiple best matching signatures indicate an ambiguity). TACE checks

the consistency of a concept requirement’s result type with all conversion requirements

in the kernel.

For each kernel and concept pair, TACE partitions the requirements into sat-

isfiable, unsatisfiable, associated, and available functions. An empty set of unsatis-

fiable requirements indicates a match. TACE can report small sets of unsatisfiable

requirements (i.e., near misses), thereby allowing users to modify the function imple-

mentation (or the concept in the repository) to make a concept-function pair work

together. The group of associated requirements contains unmatched requirements on

associated types. For example, any iterator requires the value type to be regular. Be-

210

sides regularity, some functions such as lower bound require less than comparability

of container elements. Associated requirements are subsequently matched. The group

of available functions contains requirements, where generic implementations exist.

This produces a set of candidate concepts. For example, the three iterator cate-

gories match the template parameters of search. find has two template arguments.

Any iterator concept matches the first argument. Every concept in the repository

matches the second argument.

For functions with more than one template argument, TACE generates the con-

cept requirements using a Cartesian join of the results of the individual kernels.

The final step in reducing the candidate concepts is the elimination of candidates

by eliminating all refinements, for which the refinee is also a candidate. In our case,

the concepts for bidirectional and random access iterators are eliminated from the

candidate set.

The following code snippet shows the result for search:

concept Search<typename FwdIter1, typename FwdIter2> {
requires ForwardIterator<FwdIter1>;
requires ForwardIterator<FwdIter2>;

bool operator==(iterator traits<FwdIter1>::value type&,
iterator traits<FwdIter2>::value type&);

}

Note, that matching currently does not generate extra conversion requirements.

Thus, the operator== with two different argument types does not match the

operator== defined in EqualityComparable<T>.

VIII.E.3. Families of Functions

A generic function can consist of a family of different implementations, where each

implementation exploits concept refinements (e.g., advance in §VIII.B).

A template that calls a generic function needs to incorporate the minimal re-

211

quirements of the generic function in its concept. To do so, it is necessary to de-

termine the most general implementation. Finding the base implementation is non

trivial with real code. Consider STL’s advance family. TACE extracts the following

requirements:

// for Input−Iterators
concept AdvInputIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator++(Iter&);
bool operator−−(Dist&, int);
}
// for Bidirectional−Iterators
concept AdvBidirectIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator++(Iter&);
void operator−−(Iter&);
bool operator++(Dist&, int);
bool operator−−(Dist&, int);
}
// for Randomaccess−Iterators
concept AdvRandomaccessIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator+=(Iter&, Dist&);
}

The sets of extracted requirements for the implementations based on input- and

bidirectional-iterator are in a subset/superset relation, the set of requirements for the

random access iterator based implementation is disjoint with the former sets.

If calls to generic functions where a refinement relationship cannot be inferred

occur under scenario §VIII.D, TACE requires the user mark the least specific function

implementation. A concept repository helps infer the correct refinement relationship.

However, detecting the least specific implementation can still be problematic

for generic functions with a too general definition. Consider the implementations of

advance for input- and random access iterators.

// template <class InputIterator, Class Distance>
// void advance(InputIterator& iter, Distance dist);

212

void operator++(InputIterator&); // kernel(InputIterator)
Distance operator−−(Distance&,int); // kernel(Distance)
operator bool(Distance&); // kernel(Distance)

// template <class RandomaccessIter, Class Distance>
// void advance(RandomaccessIter& iter, Distance dist);
void operator+=(InputIterator&, Distance&); // multi−parametric

The kernel for RandomaccessIter is empty, thus any concept matches. After

eliminating false positive candidates, any iterator concept matches; the requirement

operator+= becomes an operation that is defined over two independent template

arguments. Recent concept based STL implementations make the type dependence

between the two parameters explicit and TACE correctly identifies the random access

iterator concept.

VIII.F. Results

We validated the approach by matching the functions defined in GCC’s header file

algorithm. The file contains more than 9000 non-comment (and non empty) lines

of code and defines 115 algorithms plus about 100 helper functions. The algorithm

header exercises some of the most advanced language features and design techniques

used for generic programming in C++.

The success rate of the concept recovery depends on the concepts in the reposi-

tory. A repository containing syntactically similar concepts will lead to ambiguous re-

sults. We ran the tests against the repository introduced in §VIII.E plus concepts that

are defined over multiple template arguments (UnaryFunction, UnaryPredicate,

BinaryFunction and BinaryPredicate). The predicates refine the functions and

require the return type be convertible to bool.

TACE found a number of functions, where the annotations in code overly con-

strain the template arguments, such as unguarded linear insert (STL’s specifi-

213

cations are meaningful though, as the identified functions are helpers of algorithms

requiring random access.) Static analysis tools, such as TACE, are limited to recov-

ering syntactic requirements (such as, operations used and typenames referred to),

but cannot deduce semantic details from code. For example, a forward iterator differs

only semantically from an input iterator (a forward iterator can be used in multi-pass

algorithms). Also, consider find end for bidirectional iterators, which takes two dif-

ferent iterator types. The second iterator type requires only forward access and the

existence of advance(it, n). n’s possible negativity is what requires bidirectional

access. Over the entire test set, TACE currently recognizes about 70% of iterator con-

cepts correctly and unambiguously. For about 10% TACE produces a false positive

match (e.g., IntegralType) alongside the correct iterator concept. For the input set,

TACE classifies all functions and predicates (including template arguments marked

as Compare and StrictWeakOrding) correctly, but due to the reason stated at the

end of §VIII.E.2 does not generate the conversion requirement on result types.

VIII.G. Related Work

Dos Reis and Stroustrup [63] present an alternative idea for concept specification and

checking. Their approach states concepts in terms of usage patterns, a form of re-

quirement specification that mirrors the declarations and expressions in the template

body that involve template arguments. If type checking of a concrete type against

the usage pattern succeeds, then template instantiation will succeed too. In essence,

TACE reverses this process and derives the requirements from C++ source code and

converts them into signature based concepts.

The aim of type inference for dynamically typed languages, the derivation of type

annotations from dynamically typed code, is somewhat similar to concept recovery.

214

Agesen et al. [6]’s dynamic type inference on SELF generates local constraints on

objects from method bodies. By analyzing edges along trace graphs their analysis

derives global constraints from local constraints. This kind of analysis differs from our

work in a number of factors. Agesen et al start at a specific entry point of a complete

program (i.e., function main in a C++ program). This provides concrete information

on object instantiations from prototypes. Concept recovery neither depends on a

single entry point, nor does the analyzed program have to be complete (instantiations

are not required). Moreover, concept recovery is not concerned with finding concrete

type annotations, but with finding higher level abstractions that describe multiple

types (concepts). On the semantic level, C++’s type system differs from dynamically

typed languages. C++ allows automatic type conversions, overloading, and function

results are typed.

VIII.H. Future Work

The framework described in this section can be adapted for related analyses. In

this section, we describe two extensions of our framework. One extension analyzes

the actual number of a concept’s functions used in instantiations. Another extension

supports programmers in generifying concrete C++ functions by automating the lifting

process.

VIII.H.1. Concept Utilization Analysis

The design and formalization of C++ concepts have received significant attention [83,

63]. Recent studies [179] on concept use in practice provides empirical data to lan-

guage designers.

The goal of our studies is to support design decisions that relate to the automatic

215

instantiation of concept maps with real world data. To do so, we extend our analysis

tool to extract information on how many requirements of a concept are actually

necessary to instantiate a template function. This preliminary study reports our

results for the use of iterator requirements in STL algorithms (i.e., algorithm header

file).

The concept-use analysis tool extends the framework presented in this chapter.

Our tool uses the Pivot to extract requirements from template functions and generates

the internal model. Then it reads the concept definition from a repository file. In order

to get the actual requirement use, we instantiate free-standing template functions with

the concept definitions. To circumvent the lack of concept support in the language, we

utilize STL’s naming conventions of template parameters to find the proper concept

definition for each instantiation.

The analysis processes each generic function separately. For each template pa-

rameter, TACE looks up the concept from the repository according to the name of

the template parameter. Then, our tool “instantiates” the extracted functional re-

quirements with the found concepts. Note that TACE produces partial instantiations

if some concepts are not present in the repository.

A functional requirement that invokes another generic function is replaced with

the extracted requirements for the latter function. In order to discern among multiple

implementations (e.g., various implementations of advance), TACE again utilizes the

template parameters’ name. If multiple implementations exist for the same concept

(e.g., destroy has two implementations, where one is optimized to treat POD value

types.), TACE chooses the less specialized. The integration of functional requirements

is repeated until all function invocations within the strongly connected component in

the call graph have been processed.

Functions that are under constrained, such as advance for random access itera-

216

tors (discussed in §VIII.E.3), pose the same challenges for this analysis task. TACE

cannot currently handle such functions in isolation. However, TACE can handle calls

to such functions by instantiating them with the types provided at the call site.

Preliminary results: We report the results for functional requirements that are

defined over the iterator argument. Specifically, the base set excludes all associated

type requirements, and functional requirements that are defined exclusively over as-

sociated types (and concrete types). These requirements are excluded, because the

number of operations defined on, for example, the difference type would dilute the

results of iterators.

We report results for forward, bidirectional, and random access iterators. The

forward iterator concept contains nine functional requirements (default constructor,

copy constructor, destructor, assignment, equality, inequality, pre-increment, post-

increment, and dereference). The bidirectional iterator concept contains eleven re-

quirements. It adds the pre-decrement and post-decrement operation. The random

access iterator contains 20 operations. It adds requirements for less-than, greater-

than, 2x iterator subtraction, 3x iterator addition, difference, and element reference

([]).

Table XIX shows the results obtained for some algorithms. For each concept we

included the algorithm that utilizes most functional requirements. The requirement

utilization is reported in absolute numbers and percentage in parenthesis.

The utilization of a concept’s requirements range from 11.1% to 66.6%, from

18.2% to 45.5%, and from 20% (the true low would be 5% for advance) to 70%,

for Forward, Bidirectional, and Randomaccess iterators respectively. Smaller and

more fine grained concepts — in particular UnaryFunction, BinaryFunction,

UnaryPredicate, and BinaryPredicate — have a 100% utilization.

217

Table XIX. Preliminary results on concept use

Forward Bidirectional Random access

advance 1 (11.1%) 2 (18.2%) -

find 4 (44.4%) n/a 4 (20.0%)

lexicographical compare 5 (55.5%) n/a n/a

remove 6 (66.6%) n/a n/a

reverse n/a 4 (36.4%) 5 (25.0%)

rotate 6 (66.6%) 5 (45.5%) 14 (70.0%)

sort n/a n/a 14 (70.0%)

The results confirm the intuition that concepts hierarchies with fine grained

refinements exhibit higher utilization rate (e.g., Predicates, Functions). For larger

concepts, such as the iterators, we may conclude that auto concepts (or the automatic

generation of concept maps) are useful. Such mechanisms help programmers avoid

implementing functional requirements that will remain unused.

However, such conclusion requires validation by deeper and broader analysis. Fil-

tering out requirements for which a concept provides a default implementation will

be meaningful. For example, the random access iterator’s element reference opera-

tion can be expressed by using a combination of iterator addition and dereference.

Also, these preliminary results were obtained from a specific implementation of STL’s

algorithm header file. In order to provide representative data to language designers,

the analysis of other template based libraries (e.g., STAPL, BOOST graph library,

etc.) is essential.

The current analysis obtains concept annotations by analyzing a template pa-

rameter’s name. This limits the analysis to single parametric concepts. In order to

218

analyze more complex template libraries, TACE will need to recover other concept

annotations, for example by recognizing BOOST concept checking classes.

VIII.H.2. Automatic Lifting of Non-Template Code

TACE together with the concept repository can be used to automate lifting [61] —

a process to generify non template functions. Siff and Reps [162] (see also §II.C)

discuss automatic generification, using predefined functional constraints. The use of

a concept repository offers a promising approach to obtain more cohesive results.

219

CHAPTER IX

CONCLUSION AND FUTURE WORK

The premise of this dissertation is that practical programming languages evolve over

time. The enhancements of a programming language are geared towards letting pro-

grammers express their intent more clearly and more concisely. I have illustrated such

improvements by comparing source code using new language facilities with source code

using work-around code. For example, when code with open-methods is compared

with code that uses other type based dispatch techniques, code with open-methods

is shorter, exhibits better performance, and is comparable in executable size.

While newly written code will benefit from language and library enhancements,

existing software will not. Consequently, I have discussed source code rejuvenation, a

process that assists or automates source code changes to benefit from improvements

to programming languages and their libraries.

In order to be applicable to production size codes, rejuvenation requires tool

support. We used the Pivot infrastructure as the basic framework for the development

of rejuvenation tools. To simplify querying the internal program representation, I

have described a pattern match generator. This generator helps to write analysis

software that can discover replaceable implementation techniques. We have utilized

the pattern matcher for the discovery of source code that would benefit from using

initializer lists.

Additionally, this dissertation has discussed a technique to extract requirements

on template arguments from C++ template functions. We have used a repository of

concepts to identify reusable sets within the extracted set of requirements.

The work presented in this dissertation can be extended in multiple ways. The

respective chapters describe possible future directions in detail. In general, tool sup-

220

port for a catalog of work-around techniques will be useful for the transition of source

code from C++ to C++0x. In addition, the practical value of such a tool can be

extended to people learning the new language facilities.

Lastly, the ability to detect coding patterns is crucial for many similar research

areas. My rejuvenation framework can be adapted for related analysis tools, such as

bug detection in source code.

221

REFERENCES

[1] D. Abrahams, A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools,

and Techniques from Boost and Beyond (C++ in Depth Series), Addison-Wesley

Professional, Reading, MA, 2004.

[2] P. Abrahamsson, O. Salo, J. Ronkainen, Agile Software Development Methods:

Review and Analysis, Technical Report 478, VTT Electronics, 2002.

[3] S. Adamczyk, G. Dos Reis, B. Stroustrup, Initializer List Wording, Technical

Report N2531A, JTC1/SC22/WG21 C++ Standards Committee, International

Standardization Organization (ISO), February 2008.

[4] Adobe System Inc., Adobe Source Library, http://opensource.adobe.com/,

2005.

[5] E. Agerbo, A. Cornils, How to Preserve the Benefits of Design Patterns, in

OOPSLA ’98: Conference Proceedings on Object-Oriented Programming Sys-

tems, Languages, and Applications, 1998, pp. 134–143.

[6] O. Agesen, J. Palsberg, M. Schwartzbach, Type Inference of SELF, in: ECOOP

’93: Proceedings of the 7th European Conference on Object-Oriented Program-

ming, Springer, London, UK, 1993, pp. 247–267.

[7] R. Agrawal, L. G. Demichiel, B. G. Lindsay, Static Type Checking of Multi-

Methods, in: OOPSLA ’91: Conference Proceedings on Object-Oriented Pro-

gramming Systems, Languages, and Applications, ACM, New York, NY, 1991,

pp. 113–128.

[8] A. V. Aho, M. J. Corasick, Efficient String Matching: An Aid to Bibliographic

Search, Commun. ACM 18 (6), (1975) 333–340.

222

[9] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Pat-

terns Applied, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

2001.

[10] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L.

Steele Jr., S. Tobin-Hochstadt, The Fortress Language Specification version

1.0, Sun Microsystems, Inc., Santa Clara, CA, March 2008.

[11] E. Allen, J. Hallett, V. Luchangco, S. Ryu, J. Guy L. Steele, Modular Multiple

Dispatch with Multiple Inheritance, in: SAC ’07: Proceedings of the 2007 ACM

Symposium on Applied Computing, ACM, New York, NY, 2007, pp. 1117–1121.

[12] E. Amiel, O. Gruber, E. Simon, Optimizing Multi-Method Dispatch Using

Compressed Dispatch Tables, in: OOPSLA ’94: Conference Proceedings on

Object-Oriented Programming Systems, Languages, and Applications, ACM

Press, New York, NY, 1994, pp. 244–258.

[13] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,

L. Rauchwerger, STAPL: A Standard Template Adaptive Parallel C++ Library,

in: LCPC ’01: Proceedings of the 14th International Conference on Languages

and Compilers for Parallel Computing, Cumberland Falls, KY, Vol. 2624 of

LNCS, Springer, 2001, pp. 193–208.

[14] K. Arnold, J. Gosling, D. Holmes, The Java Programming Language, 4th ed.,

Prentice-Hall, Inc., Upper Saddle River, NJ, 2005.

[15] M. H. Austern, Generic Programming and the STL: Using and Extending the

C++ Standard Template Library, Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, 1998.

223

[16] O. S. Bagge, M. Haveraaen, Domain-Specific Optimisation with User-Defined

Rules in CodeBoost, in: J.-L. Giavitto, P.-E. Moreau (eds.), in RULE’03:

Proceedings of the 4th International Workshop on Rule-Based Programming,

Vol. 86/2 of Electronic Notes in Theoretical Computer Science, Elsevier, Va-

lencia, Spain, 2003, pp. 119–133.

[17] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, E. Visser, Design of the CodeBoost

Transformation System for Domain-Specific Optimisation of C++ Programs, in:

D. Binkley, P. Tonella (eds.), in: SCAM ’04: The 3rd International Workshop

on Source Code Analysis and Manipulation, IEEE Computer Society Press,

Amsterdam, The Netherlands, 2003, pp. 65–75.

[18] I. Balaban, F. Tip, R. Fuhrer, Refactoring Support for Class Library Migration,

in: OOPSLA ’05: Conference Proceedings on Object-Oriented Programming

Systems, Languages, and Applications, ACM, New York, NY, 2005, pp. 265–

279.

[19] Z. Balanyi, R. Ferenc, Mining Design Patterns from C++ Source Code, in: ICSM

’03: Proceedings of the International Conference on Software Maintenance,

IEEE Computer Society, Washington, DC, 2003, pp. 305–314.

[20] E. Balland, Y. Boichut, T. Genet, P.-E. Moreau, Towards an Efficient Imple-

mentation of Tree Automata Completion, in: AMAST ’08: Proceedings of the

12th International Conference on Algebraic Methodology and Software Tech-

nology, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 67–82.

[21] G. Barnes, A Method for Implementing Lock-Free Shared-Data Structures, in:

SPAA ’93: Proceedings of the 5th Annual ACM Symposium on Parallel Algo-

rithms and Architectures, ACM Press, New York, NY, 1993, pp. 261–270.

224

[22] J. J. Barton, L. R. Nackman, Scientific and Engineering C++: An Introduction

with Advanced Techniques and Examples, Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, 1994.

[23] I. D. Baxter, DMS: Program Transformations for Practical Scalable Software

Evolution, in: IWPSE ’02: Proceedings of the International Workshop on Prin-

ciples of Software Evolution, ACM, New York, NY, 2002, pp. 48–51.

[24] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier, Clone Detection

Using Abstract Syntax Trees, in: ICSM ’98: Proceedings of the International

Conference on Software Maintenance, IEEE Computer Society, Washington,

DC, 1998, pp. 368–377.

[25] P. Becker, The C++ Standard Library Extensions: A Tutorial and Reference,

1st ed., Addison-Wesley Professional, Boston, MA, 2006.

[26] The Boost C++ Libraries, http://www.boost.org/, retrieved July 2008.

[27] P. Becker, Working Draft, Standard for Programming Language C++, Technical

Report N2914, JTC1/SC22/WG21 C++ Standards Committee, International

Standardization Organization (ISO), June 2009.

[28] T. Becker, Type Erasure in C++: The Glue between Object Oriented and

Generic Programming, in: K. Davis, J. Striegnitz (eds.), in: MPOOL ’07: Pro-

ceedings of the Multiparadigm Programming Workshop at ECOOP, 2007.

[29] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,

A. Kamsky, S. McPeak, D. Engler, A Few Billion Lines of Code Later: Using

Static Analysis to Find Bugs in the Real World, Commun. ACM 53 (2), (2010)

66–75.

225

[30] L. Bettini, S. Capecchi, B. Venneri, Double Dispatch in C++, Software - Practice

and Experience 36 (6), (2006) 581–613.

[31] G. M. Birtwistle, O. Dahl, B. Myhrhaug, K. Nygaard, Simula BEGIN, Auerbach

Press, Philadelphia, 1973.

[32] D. Bonniot, B. Keller, F. Barber, The Nice User’s Manual, 2008.

http://nice.sourceforge.net/manual.html, retrieved September 2009.

[33] L. Bourdev, J. Järvi, Efficient Run-Time Dispatching in Generic Programming

with Minimal Code Bloat, in: LCSD ’06: Workshop of Library-Centric Software

Design at OOPSLA’06, Chalmers University, Göteborg, Sweden, 2006, pp. 15–

24.

[34] J. Boyland, G. Castagna, Type-Safe Compilation of Covariant Specialization: A

Practical Case, in: ECCOP ’96: Proceedings of the 10th European Conference

on Object-Oriented Programming, Springer-Verlag, London, UK, 1996, pp. 3–

25.

[35] J. Boyland, G. Castagna, Parasitic Methods: An Implementation of Multi-

Methods for Java, in: OOPSLA ’97: Proceedings of the 12th ACM SIGPLAN

Conf. on Object-Oriented Programming, Systems, Languages, and Applica-

tions, ACM Press, New York, NY, 1997, pp. 66–76.

[36] M. Bravenboer, K. T. Kalleberg, R. Vermaas, E. Visser, Stratego/XT 0.16:

Components for Transformation Systems, in: PEPM ’06: Proceedings of the

2006 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based

Program Manipulation, ACM, New York, NY, 2006, pp. 95–99.

226

[37] W. J. Brown, R. C. Malveau, H. W. McCormick, III, T. J. Mowbray, AntiPat-

terns: Refactoring Software, Architectures, and Projects in Crisis, John Wiley

& Sons, Inc., New York, NY, 1998.

[38] K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, B. Pierce, On Binary Meth-

ods, Theor. Pract. Object Syst. 1 (3) (1995) 221–242.

[39] S. Ceri, G. Gottlob, L. Tanca, What You Always Wanted to Know about Dat-

alog (and Never Dared to Ask), IEEE Transactions on Knowledge and Data

Engineering 1, 1989, pp. 146–166.

[40] D. Chamberlin, XQuery: An XML Query Language, IBM Syst. J. 41 (4) (2002)

597–615.

[41] C. Chambers, Object-Oriented Multi-Methods in Cecil, in: ECOOP ’92: Pro-

ceedings of the European Conf. on Object-Oriented Programming, Springer-

Verlag, London, UK, 1992, pp. 33–56.

[42] C. Chambers, The Cecil Language: Specification and Rationale v3.2, University

of Washington, Seattle, WA, 2004.

[43] C. Chambers, The Diesel Language, Specification and Rationale v0.2, Univer-

sity of Washington, Seattle, WA, 2006.

[44] C. Chambers, W. Chen, Efficient Multiple and Predicated Dispatching, in:

OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, ACM Press,

New York, NY, 1999, pp. 238–255.

[45] B. Chelf, D. Engler, S. Hallem, How to Write System-Specific, Static Checkers

in Metal, in: PASTE ’02: Proceedings of the 2002 ACM SIGPLAN-SIGSOFT

227

Workshop on Program Analysis for Software Tools and Engineering, ACM, New

York, NY, 2002, pp. 51–60.

[46] K. Chen, D. Wagner, Large-scale Analysis of Format String Vulnerabilities in

Debian Linux, in: PLAS ’07: Proceedings of the 2007 Workshop on Program-

ming Languages and Analysis for Security, ACM, New York, NY, 2007, pp.

75–84.

[47] C. Cleeland, D. Schmidt, T. Harrison, External Polymorphism – an Object

Structural Pattern for Transparently Extending Concrete Data Types, in: Pat-

tern Languages of Program Design (R. Martin, F. Buschmann, and D. Riehle,

eds.), Addison-Wesley, Reading, MA, 1997.

[48] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein, MultiJava: Modular

Open Classes and Symmetric Multiple Dispatch for Java, in: OOPSLA ’00:

Proceedings of the 15th ACM SIGPLAN Conf. on Object-Oriented Program-

ming, Systems, Languages, and Applications, ACM Press, New York, NY, 2000,

pp. 130–145.

[49] C. Clifton, T. Millstein, G. T. Leavens, C. Chambers, MultiJava: Design Ratio-

nale, Compiler Implementation, and Applications, ACM Trans. Program. Lang.

Syst. 28 (3) (2006) 517–575.

[50] M. L. Collard, J. I. Maletic, A. Marcus, Supporting Document and Data Views

of Source Code, in: DocEng ’02: Proceedings of the 2002 ACM Symposium on

Document Engineering, ACM, New York, NY, 2002, pp. 34–41.

[51] S. Cook, D. Dechev, P. Pirkelbauer, IQL: An IPR Query Language, Course

Project, C++ Template Meta Programming, Texas A&M University, College

Station, TX, 2004.

228

[52] J. R. Cordy, Source Transformation, Analysis and Generation in TXL, in:

PEPM ’06: Proceedings of the 2006 ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-Based Program Manipulation, ACM, New York, NY,

2006, pp. 1–11.

[53] J. R. Cordy, The TXL Source Transformation Language, Sci. Comput. Program.

61 (3) (2006) 190–210.

[54] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algo-

rithms, MIT Press, Cambridge, MA, 2001.

[55] L. Damas, R. Milner, Principal Type-Schemes for Functional Programs, in:

POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ACM, New York, NY, 1982, pp. 207–

212.

[56] D. Dechev, P. Pirkelbauer, N. Rouquette, B. Stroustrup, Semantically

Enhanced Containers for Concurrent Real-Time Systems, Engineering of

Computer-Based Systems, IEEE International Conference, 2009, pp. 48–57.

[57] D. Dechev, P. Pirkelbauer, B. Stroustrup, Lock-Free Dynamically Resizable

Arrays., in: A. A. Shvartsman (ed.), OPODIS, Vol. 4305 of Lecture Notes in

Computer Science, Springer, 2006, pp. 142–156.

[58] D. Dechev, N. Rouquette, P. Pirkelbauer, B. Stroustrup, Verification and Se-

mantic Parallelization of Goal-Driven Autonomous Software, in: Autonomics

’08: Proceedings of 2nd International Conference on Autonomic Computing

and Communication Systems, 2008, pp. 33:1–33:8.

[59] J. C. Dehnert, A. A. Stepanov, Fundamentals of Generic Programming, in:

229

Selected Papers from the International Seminar on Generic Programming,

Springer-Verlag, London, UK, 2000, pp. 1–11.

[60] D. v. Dincklage, A. Diwan, Converting Java Classes to Use Generics, in: OOP-

SLA ’04: Proceedings of the 19th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, ACM,

New York, NY, 2004, pp. 1–14.

[61] G. Dos Reis, Personal Communication, December 2009.

[62] G. Dos Reis, B. Stroustrup, A C++ Formalism, Technical Report N1885,

JTC1/SC22/WG21 C++ Standards Committee, International Standardization

Organization (ISO), 2005.

[63] G. Dos Reis, B. Stroustrup, Specifying C++ Concepts, in: POPL ’06: Confer-

ence Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, ACM Press, New York, NY, 2006, pp. 295–308.

[64] G. Dos Reis, B. Stroustrup, A Principled, Complete, and Efficient Represen-

tation of C++, in: M. Suzuki, H. Hong, H. Anai, C. Yap, Y. Sato, H. Yoshida

(eds.), The Joint Conference of ASCM 2009 and MACIS 2009, Vol. 22 of MI

Lecture Note Series, COE, Fukuoka, Japan, 2009, pp. 151–166.

[65] G. Dos Reis, B. Stroustrup, A. Meredith, Axioms: Semantics Aspects of C++

Concepts, Technical Report N2887, JTC1/SC22/WG21 C++ Standards Com-

mittee, International Standardization Organization (ISO), June 2009.

[66] S. Ducasse, M. Lanza, Towards a Methodology for the Understanding of Object-

Oriented Systems, Technique et Science Informatiques, Hermes Publications,

Vol. 6 (2001), 539–566.

230

[67] Eclipse Framework, MoDisco Project, http://www.eclipse.org/gmt/modisco/,

retrieved September 2009.

[68] ECMA, The C# Language Specification, Technical Report ECMA-334, ECMA

(European Association for Standardizing Information and Communication Sys-

tems), Geneva, Switzerland, June 2006.

[69] Edison Design Group, C++ Front End, http://www.edg.com/, retrieved July

2008.

[70] R. Ferenc, I. Siket, T. Gyimóthy, Extracting Facts from Open Source Software,

in: ICSM ’04: Proceedings of the 20th International Conference on Software

Maintenance, IEEE Computer Society, 2004, pp. 60–69.

[71] C. B. Flynn, D. Wonnacott, Reconciling Encapsulation and Dynamic Dispatch

via Accessory Functions, Technical Report 387, Haverford College, 1999.

[72] B. Foote, R. E. Johnson, J. Noble, Efficient Multimethods in a Single Dispatch

Language, in: ECOOP ’05: Proceedings of the European Conference on Object-

Oriented Programming, Glasgow, Scotland, 2005, pp. 337–361.

[73] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving

the Design of Existing Code, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, 1999.

[74] K. Fraser, Practical Lock-Freedom, Technical Report UCAM-CL-TR-579, Un-

versity of Cambridge, February 2004.

[75] E. Fredkin, Trie Memory, Commun. ACM 3 (9) (1960) 490–499.

[76] Free Software Foundation, GCC, the GNU Compiler Collection,

http://gcc.gnu.org/, retrieved April 2010.

231

[77] C. Frost, T. Millstein, Modularly Typesafe Interface Dispatch in JPred, in:

FOOL/WOOD ’06: 2006 International Workshop on Foundations and Devel-

opment of Object-Oriented Languages, Charleston, SC, 2006.

[78] J. Fulara, K. Jakubczyk, Practically Applicable Formal Methods, in: J. v.

Leeuwen, A. Muscholl, D. Peleg, J. Pokorný, B. Rumpe (eds.), SOFSEM,

Vol. 5901 of Lecture Notes in Computer Science, Springer, 2010, pp. 407–418.

[79] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, 1995.

[80] M. Gibbs, B. Stroustrup, Fast Dynamic Casting, Softw. Pract. Exper. 36 (2)

(2006) 139–156.

[81] J. Y. Gil, I. Maman, Micro Patterns in Java Code, in: OOPSLA ’05: Pro-

ceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, ACM, New York, NY,

2005, pp. 97–116.

[82] A. Goldberg, D. Robson, Smalltalk-80: The Language and Its Implementation,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1983.

[83] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, A. Lumsdaine, Con-

cepts: Linguistic Support for Generic Programming in C++, in: OOPSLA ’06:

Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and Applications, ACM Press, New York,

NY, 2006, pp. 291–310.

[84] D. Gregor, B. Stroustrup, J. Siek, J. Widman, Proposed Wording for Concepts

232

(rev 4), Technical Report N2501, JTC1/SC22/WG21 C++ Standards Commit-

tee, International Standardization Organization (ISO), February 2008.

[85] G. Greif, Chinese Dispatch – Unpublished Presentation Notes, Dylan Hackers

Conference, Berlin, Germany, July 2002.

[86] D. Grune, C. J. H. Jacobs, Parsing Techniques (Monographs in Computer Sci-

ence), Springer-Verlag New York, Inc., Secaucus, NJ, 2006.

[87] T. L. Harris, A Pragmatic Implementation of Non-Blocking Linked-Lists, in:

DISC ’01, Springer-Verlag, London, UK, 2001, pp. 300–314.

[88] M. Harsu, Re-Engineering Legacy Software through Language Conversion,

Ph.D. Thesis, University of Tampere, Tampere, Finland, 2000.

[89] D. Hendler, N. Shavit, L. Yerushalmi, A Scalable Lock-Free Stack Algorithm, in:

SPAA ’04: Proceedings of the 16th Annual ACM Symposium on Parallelism in

Algorithms and Architectures, ACM Press, New York, NY, 2004, pp. 206–215.

[90] M. Herlihy, A Methodology for Implementing Highly Concurrent Data Objects,

ACM Trans. Program. Lang. Syst. 15 (5) (1993) 745–770.

[91] M. Herlihy, V. Luchangco, P. Martin, M. Moir, Nonblocking Memory Manage-

ment Support for Dynamic-Sized Data Structures, ACM Trans. Comput. Syst.

23 (2), 2005, pp. 146–196.

[92] D. Hovemeyer, W. Pugh, Finding Bugs is Easy, in: OOPSLA ’04: Companion to

the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications, ACM, New York, NY, 2004, pp. 132–

136.

233

[93] S. S. Huang, Y. Smaragdakis, Expressive and Safe Static Reflection with Mor-

phJ, in: PLDI ’08: Proceedings of the 2008 ACM SIGPLAN Conference on

Programming Language Design and Implementation, ACM, New York, NY,

2008, pp. 79–89.

[94] Intel, IA-32 Intel Architecture Software Developer’s Manual, Vol. 3: System

Programming Guide, Mt. Prospect, IL, 2004.

[95] Intel, Reference for Intel Threading Building Blocks, version 1.0, Mt. Prospect,

IL, April 2006.

[96] International Standardization Organization, ISO/IEC 10918-1:1994: Informa-

tion Technology –- Digital Compression and Coding of Continuous-Tone Still

Images: Requirements and Guidelines, pub-ISO, pub-ISO:adr, Geneva, Switzer-

land, 1994.

[97] ISO/IEC 14882 International Standard, Programming Languages: C++, Amer-

ican National Standards Institute, Washington, DC, 1998.

[98] The Itanium C++ ABI, http://www.codesourcery.com/public/cxx-

abi/abi.html, retrieved August 2006.

[99] M. Iwaihara, Y. Inoue, Bottom-up Evaluation of Logic Programs Using Binary

Decision Diagrams, in: ICDE ’95: Proceedings of the 11th International Con-

ference on Data Engineering, IEEE Computer Society, Washington, DC, 1995,

pp. 467–474.

[100] J. Järvi, D. Gregor, J. Willcock, A. Lumsdaine, J. Siek, Algorithm Specializa-

tion in Generic Programming: Challenges of Constrained Generics in C++, in:

234

PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, ACM, New York, NY, 2006, pp.

272–282.

[101] J. Järvi, M. A. Marcus, J. N. Smith, Library Composition and Adaptation Using

C++ Concepts, in: GPCE ’07: Proceedings of the 6th International Conference

on Generative Programming and Component Engineering, ACM Press, New

York, NY, 2007, pp. 73–82.

[102] J. Järvi, J. Willcock, H. Hinnant, A. Lumsdaine, Function Overloading Based

on Arbitrary Properties of Types., C/C++ Users Journal (21(6)), CMP Media,

Manhasset, NY, (2003) 25–32.

[103] M. Jones, Typing Haskell in Haskell, http://www.cse.ogi.edu/ mpj/thih/,

November 2000, retrieved September 2010.

[104] L. C. L. Kats, M. Bravenboer, E. Visser, Mixing Source and Bytecode: A

Case for Compilation by Normalization, in: OOPSLA ’08: Proceedings of the

23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems

Languages and Applications, ACM, New York, NY, 2008, pp. 91–108.

[105] J. Kerievsky, Refactoring to Patterns, Pearson Higher Education, Upper Saddle

River, NJ, 2004.

[106] S. Kuznetsov, S. Obiedkov, Algorithms for the Construction of Concept Lattices

and Their Diagram Graphs, in: Principles of Data Mining and Knowledge

Discovery, Vol. 2168 of LNCS, Springer-Verlag, 2001, pp. 289–300.

[107] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin,

C. Unkel, Context-Sensitive Program Analysis as Database Queries, in: PODS

235

’05: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, ACM, New York, NY, 2005, pp. 1–12.

[108] R. Lämmel, Towards Generic Refactoring, in: RULE ’02: Proceedings of the

2002 ACM SIGPLAN Workshop on Rule-Based Programming, ACM, New

York, NY, 2002, pp. 15–28.

[109] A. Langer, K. Kreft, Secrets of Equals, C/C++ Users Journal (20(4)), Java

Supplement, CMP Media, Manhasset, NY, April 2002.

[110] C. Lattner, V. Adve, LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation, in: CGO’04: Proceedings of the 2004 International

Symposium on Code Generation and Optimization, Palo Alto, California, 2004,

pp. 75–86.

[111] B. Liskov, Keynote Address - Data Abstraction and Hierarchy, in: OOPSLA

’87: Addendum to the Proceedings on Object-Oriented Programming Systems,

Languages and Applications (Addendum), ACM Press, New York, NY, 1987,

pp. 17–34.

[112] Lockheed Martin, Joint Strike Fighter, Air Vehicle, C++ Coding Standard, Tech-

nical Report, Lockheed Martin, Fort Worth, TX, December 2005.

[113] J. I. Maletic, M. L. Collard, A. Marcus, Source Code Files as Structured Doc-

uments, in: IWPC ’02: Proceedings of the 10th International Workshop on

Program Comprehension, IEEE Computer Society, Washington, DC, 2002, pp.

289–292.

[114] M. Marcus, J. Järvi, S. Parent, Runtime Polymorphic Generic Programming–-

Mixing Objects and Concepts in ConceptC++, in: K. Davis, J. Striegnitz (eds.),

236

MPOOL ’07: Proceedings of the Multiparadigm Programming Workshop at

ECOOP, 2007.

[115] M. Martin, B. Livshits, M. S. Lam, Finding Application Errors and Security

Flaws Using PQL: A Program Query Language, in: OOPSLA ’05: Proceedings

of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, ACM, New York, NY, 2005, pp.

365–383.

[116] B. McCloskey, E. Brewer, ASTEC: A New Approach to Refactoring C, SIG-

SOFT Softw. Eng. Notes 30 (5) (2005), 21–30.

[117] S. McPeak, Elsa: An Elkhound Based C++ Parser, August 2008.

http://scottmcpeak.com/elkhound/, retrieved May 2010.

[118] S. G. McPeak, Elkhound: A Fast, Practical GLR Parser Generator, Technical

Report UcB/cSD-2-1214, UC Berkeley, CA, 2002.

[119] T. Mens, T. Tourwé, A Survey of Software Refactoring, IEEE Trans. Softw.

Eng. 30 (2) (2004), 126–139.

[120] J. Merrill, D. Vandevoorde, Initializer Lists — Alternative Mechanism and Ra-

tionale, Technical Report N2640, JTC1/SC22/WG21 C++ Standards Commit-

tee, International Standardization Organization (ISO), 2008.

[121] R. Metzger, Z. Wen, Automatic Algorithm Recognition and Replacement: A

New Approach to Program Optimization, MIT Press, Cambridge, MA, 2000.

[122] B. Meyer, Eiffel: The Language, Prentice-Hall, Inc., Upper Saddle River, NJ,

1992.

237

[123] M. M. Michael, High Performance Dynamic Lock-Free Hash Tables and List-

Based Sets, in: SPAA ’02: Proceedings of the 14th Annual ACM Symposium

on Parallel Algorithms and Architectures, ACM Press, New York, NY, 2002,

pp. 73–82.

[124] M. M. Michael, CAS-Based Lock-Free Algorithm for Shared Deques, in: Euro-

Par ’03, Vol. 2790 of LNCS, 2003, pp. 651–660.

[125] M. M. Michael, Hazard Pointers: Safe Memory Reclamation for Lock-Free Ob-

jects, IEEE Trans. Parallel Distrib. Syst. 15 (6) (2004) 491–504.

[126] M. M. Michael, M. L. Scott, Correction of a Memory Management Method

for Lock-Free Data Structures, Technical Report 599, University of Rochester,

Rochester, NY, 1995.

[127] A. Miller, Proposed Language Extensions for Java 7,

http://tech.puredanger.com/java7/, retrieved July 2009.

[128] T. Millstein, C. Chambers, Modular Statically Typed Multimethods, Informa-

tion and Computation 175 (1) (2002) 76–118.

[129] T. Millstein, M. Reay, C. Chambers, Relaxed MultiJava: Balancing Extensi-

bility and Modular Typechecking, in: OOPSLA ’03: Proceedings of the 18th

Annual ACM SIGPLAN Conf. on Object-Oriented Programing, Systems, Lan-

guages, and Applications, ACM Press, New York, NY, 2003, pp. 224–240.

[130] T. D. Millstein, C. Chambers, Modular Statically Typed Multimethods, in:

ECOOP ’99: Proceedings of the 13th European Conf. on Object-Oriented Pro-

gramming, Vol. 1628 of LNCS, Springer-Verlag, London, UK, 1999, pp. 279–303.

238

[131] R. Muschevici, A. Potanin, E. Tempero, J. Noble, Multiple Dispatch in Practice,

in: OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN Conference on

Object Oriented Programming Systems Languages and Applications, ACM,

New York, NY, 2008, pp. 563–582.

[132] N. C. Myers, Traits: A New and Useful Template Technique, in: C++ Gems,

SIGS Publications, Inc., New York, NY, 1996, pp. 451–457.

[133] W. F. Opdyke, Refactoring Object-Oriented Frameworks, Ph.D. Thesis, Univer-

sity of Illinois at Urbana-Champaign, Champaign, IL, uMI Order No. GAX93-

05645, 1992.

[134] W. F. Opdyke, R. E. Johnson, Creating Abstract Superclasses by Refactoring,

in: CSC ’93: Proceedings of the 1993 ACM Conference on Computer Science,

ACM, New York, NY, 1993, pp. 66–73.

[135] E. Panizzi, B. Pastorelli, Multimethods and Separate Static Typechecking in a

Language with C++-Like Object Model, The Computing Research Repository

(CoRR) cs.PL/0005033, 2000.

[136] S. Parent, Beyond Objects: Understanding the Software We

Write, Presentation at C++ Connections, November 2005,

http://stlab.adobe.com/wiki/index.php/Image:Regular object presentation.pdf,

retrieved July 2006.

[137] S. Parent, Concept-Based Runtime Polymorphism, Presentation at BoostCon,

May 2007, http://stlab.adobe.com/wiki/index.php/Image:Boost poly.pdf, re-

trieved October 2007.

[138] C. Parnin, C. Görg, O. Nnadi, A Catalogue of Lightweight Visualizations to

239

Support Code Smell Inspection, in: SoftVis ’08: Proceedings of the 4th ACM

Symposium on Software Visualization, ACM, New York, NY, 2008, pp. 77–86.

[139] T. J. Parr, R. W. Quong, ANTLR: A Predicated-LL(k) Parser Generator, Soft-

ware Practice and Experience 25 (1994) 789–810.

[140] J. Peterson, M. Jones, Implementing Type Classes, in: PLDI ’93: Proceedings

of the ACM SIGPLAN 1993 Conference on Programming Language Design and

Implementation, ACM, New York, NY, 1993, pp. 227–236.

[141] B. C. Pierce, Types and Programming Languages, MIT Press, Cambridge, MA,

2002.

[142] P. Pirkelbauer, D. Dechev, B. Stroustrup, Source Code Rejuvenation Is Not

Refactoring, in: J. v. Leeuwen, A. Muscholl, D. Peleg, J. Pokorný, B. Rumpe

(eds.), SOFSEM, Vol. 5901 of Lecture Notes in Computer Science, Springer,

2010.

[143] P. Pirkelbauer, S. Parent, M. Marcus, B. Stroustrup, Runtime Concepts for the

C++ Standard Template Library, in: SAC ’08: Proceedings of the 2008 ACM

Symposium on Applied Computing, ACM, New York, NY, 2008, pp. 171–177.

[144] P. Pirkelbauer, S. Parent, M. Marcus, B. Stroustrup, Dynamic Algorithm Se-

lection for Runtime Concepts, Science of Computer Programming 75 (9) (2010)

773–786.

[145] P. Pirkelbauer, Y. Solodkyy, B. Stroustrup, Open Multi-Methods for C++, in:

GPCE ’07: Proceedings of the 6th International Conference on Generative Pro-

gramming and Component Engineering, ACM Press, New York, NY, 2007, pp.

123–134.

240

[146] P. Pirkelbauer, Y. Solodkyy, B. Stroustrup, Report on Language Support

for Multi-Methods and Open-Methods for C++, Technical Report N2216,

JTC1/SC22/WG21 C++ Standards Committee, International Standardization

Organization (ISO), 2007.

[147] P. Pirkelbauer, Y. Solodkyy, B. Stroustrup, Design and Evaluation of C++ Open

Multi-Methods, Science of Computer Programmming 75 (7) (2010) 638–667.

[148] R. Preissl, M. Schulz, D. Kranzlmüller, B. R. de Supinski, D. J. Quinlan, Trans-

forming MPI Source Code Based on Communication Patterns, Future Gener.

Comput. Syst. 26 (1) (2010) 147–154.

[149] D. Quinlan, M. Schordan, Q. Yi, B. R. d. Supinski, Semantic-Driven Paralleliza-

tion of Loops Operating on User-Defined Containers, in: LCPC’03, Proceedings

of the Workshop on Languages and Compilers for Parallel Computing, LNCS

2958, Springer, 2004, pp 524–538.

[150] D. J. Quinlan, R. W. Vuduc, G. Misherghi, Techniques for Specifying Bug

Patterns, in: PADTAD ’07: Proceedings of the 2007 ACM Workshop on Parallel

and Distributed Systems: Testing and Debugging, ACM, New York, NY, 2007,

pp. 27–35.

[151] R. Ramesh, I. V. Ramakrishnan, Nonlinear Pattern Matching in Trees, J. ACM

39 (2) (1992) 295–316.

[152] D. M. Ritchie, The Development of the C Language, in: HOPL-II: The 2nd

ACM SIGPLAN Conference on History of Programming Languages, ACM, New

York, NY, 1993, pp. 201–208.

[153] A. Robison, Personal Communication, April 2006.

241

[154] J. E. Sammet, The Early History of COBOL, SIGPLAN Not. 13 (8) (1978)

121–161.

[155] M. Schordan, D. Quinlan, A Source-to-Source Architecture for User-Defined

Optimizations, in: JMLC’03: Joint Modular Languages Conference, Vol. 2789

of LNCS, Springer, 2003, pp. 214–223.

[156] O. Shalev, N. Shavit, Split-Ordered Lists: Lock-Free Extensible Hash Tables,

in: PODC ’03: Proceedings of the 22nd Annual Symposium on Principles of

Distributed Computing, ACM Press, New York, NY, 2003, pp. 102–111.

[157] A. Shalit, D. Moon, O. Starbuck: The Dylan Reference Manual: The Definitive

Guide to the New Object-Oriented Dynamic Language (Apple Press Series),

Addison-Wesley Publishing Co., New York, NY, 1996.

[158] N. Shi, R. A. Olsson, Reverse Engineering of Design Patterns from Java Source

Code, in: ASE ’06: Proceedings of the 21st IEEE/ACM International Confer-

ence on Automated Software Engineering, IEEE Computer Society, Washing-

ton, DC, 2006, pp. 123–134.

[159] D. Shopyrin, Multimethods Implementation in C++ Using Recursive Deferred

Dispatching, IEEE Softw. 23 (3) (2006) 62–73.

[160] J. Siek, A. Lumsdaine, Concept Checking: Binding Parametric Polymorphism

in C++, in: 1st Workshop on C++ Template Programming, Erfurt, Germany,

2000.

[161] J. G. Siek, L.-Q. Lee, A. Lumsdaine, The Boost Graph Library: User Guide

and Reference Manual, Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, 2002.

242

[162] M. Siff, T. Reps, Program Generalization for Software Reuse: from C to C++,

in: SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT Symposium on

Foundations of Software Engineering, ACM, New York, NY, 1996, pp. 135–146.

[163] M. Siff, T. Reps, Identifying Modules via Concept Analysis, IEEE Trans. Softw.

Eng. 25 (6) (1999) 749–768.

[164] M. B. Siff, Techniques for Software Renovation, Ph.D. Thesis, University of

Wisconsin at Madison, 1999.

[165] Y. Smaragdakis, D. S. Batory, Mixin-Based Programming in C++, in: GCSE

’00: Proceedings of the 2nd International Symposium on Generative and

Component-Based Software Engineering-Revised Papers, Springer-Verlag, Lon-

don, UK, 2001, pp. 163–177.

[166] J. Smith, Draft Proposal for Adding Multimethods to C++, Technical Report

N1463, JTC1/SC22/WG21 C++ Standards Committee, International Standard-

ization Organization (ISO), 2003.

[167] A. Snyder, Encapsulation and Inheritance in Object-Oriented Programming

Languages, in: OOPLSA ’86: Conference Proceedings on Object-Oriented Pro-

gramming Systems, Languages and Applications, ACM, New York, NY, 1986,

pp. 38–45.

[168] G. L. Steele, Jr, Common LISP: The Language (2nd ed.), Digital Press, Newton,

MA, 1990.

[169] A. Stepanov, P. McJones, Elements of Programming, Addison-Wesley Profes-

sional, Reading, MA, 2009.

243

[170] B. Stroustrup, The Design and Evolution of C++, ACM Press/Addison-Wesley

Publishing Co., New York, NY, 1994.

[171] B. Stroustrup, The C++ Programming Language, Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, 2000.

[172] B. Stroustrup, Abstraction and the C++ Machine Model, in: ICESS’04: 1st

International Conference on Embedded Software and Systems, Vol. 3605 of

LNCS, Springer, 2004, pp. 1–13.

[173] B. Stroustrup, The Design of C++0x, C/C++ Users Journal (23(5)), CMP Media,

Manhasset, NY, May 2005.

[174] B. Stroustrup, Evolving a Language in and for the Real World: C++ 1991-2006,

in: HOPL III: Proceedings of the 3rd ACM SIGPLAN Conference on History

of Programming Languages, ACM, New York, NY, 2007, pp. 4-1–4-59.

[175] B. Stroustrup, The C++0x “Remove Concept” Decision, Dr.Dobb’s Journal 92,

August 2009, http://www.drdobbs.com/cpp/218600111, retrieved August 2009.

[176] B. Stroustrup, Expounds on Concepts and the Future of C++, Interview with

Danny Kalev, www.devx.com/cplus/Article/42448/0/page/1, August 2009, re-

trieved October 2009.

[177] B. Stroustrup, G. Dos Reis, Supporting SELL for High-Performance Comput-

ing, in: 18th International Workshop on Languages and Compilers for Parallel

Computing, Vol. 4339 of LNCS, Springer-Verlag, 2005, pp. 458–465.

[178] H. Sundell, P. Tsigas, Lock-Free and Practical Doubly Linked List-Based De-

ques Using Single-Word Compare-and-Swap, in: OPODIS 2004: Principles of

Distributed Systems, 8th Int. Conf., Vol 3544 of LNCS, 2005, pp. 240–255.

244

[179] A. Sutton, Empirically Motivating C++ Concepts, Invited Talk, Department of

Computer Science and Engineering at Texas A&M University, April 2010.

[180] A. Sutton, J. I. Maletic, Recovering UML Class Models from C++: A Detailed

Explanation, Inf. Softw. Technol. 49 (3) (2007) 212–229.

[181] A. Sutton, J. I. Maletic, Automatically Identifying C++0x Concepts in Function

Templates, in: ICSM ’08: 24th IEEE International Conference on Software

Maintenance, 2008, Beijing, China, IEEE, 2008, pp. 57–66.

[182] W. Tansey, E. Tilevich, Annotation Refactoring: Inferring Upgrade Transfor-

mations for Legacy Applications, in: OOPSLA ’08: Proceedings of the 23rd

ACM SIGPLAN Conference on Object-Oriented Programming Systems Lan-

guages and Applications, Vol. 43, ACM, New York, NY, 2008, pp. 295–312.

[183] D. Thomas, A. Hunt, Programming Ruby: The Pragmatic Programmer’s

Guide, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2000.

[184] S. Thompson, G. Brat, Verification of C++ Flight Software with the MCP Model

Checker, in: IEEE Aerospace Conference, Big Sky, MT, 2008, pp. 1–9.

[185] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan, Soot - a

Java bytecode Optimization Framework, in: CASCON ’99: Proceedings of the

1999 Conference of the Centre for Advanced Studies on Collaborative Research,

IBM Press, 1999, pp. 13–23.

[186] G. van Rossum, The Python Language Reference Manual, Network Theory

Ltd., Bristol, UK, 2003, paperback.

[187] T. L. Veldhuizen, Arrays in Blitz++, in: ISCOPE ’98: Proceedings of the 2nd

245

International Symposium on Computing in Object-Oriented Parallel Environ-

ments, Springer-Verlag, London, UK, 1998, pp. 223–230.

[188] A. Venet, A Practical Approach towards Formal Software Verification through

Static Analysis, ADA letters XXVIII (1) (2008) 92–95.

[189] Video Codec and Pixel Format Definitions, http://www.fourcc.org/, retrieved

February 2007.

[190] J. Visser, Visitor Combination and Traversal Control, in: OOPSLA ’01: Pro-

ceedings of the 16th ACM SIGPLAN Conference on Object Oriented Program-

ming, Systems, Languages, and Applications, ACM Press, New York, NY, 2001,

pp. 270–282.

[191] P. Wadler, S. Blott, How to Make Ad-Hoc Polymorphism Less Ad Hoc, in:

POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ACM, New York, NY, 1989, pp. 60–76.

[192] L. Wagner, Traversal, Case Analysis, and Lowering for C++ Program Analysis,

M.S. Thesis, Texas A&M University, College Station, TX, 2009.

[193] D. Wasserrab, T. Nipkow, G. Snelting, F. Tip, An Operational Semantics and

Type Safety Proof for Multiple Inheritance in C++, in: OOPSLA ’06: Pro-

ceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and Applications, ACM Press, New York,

NY, 2006, pp. 345–362.

[194] J. J. Willcock, A. Lumsdaine, D. J. Quinlan, Reusable, Generic Program Anal-

yses and Transformations, in: GPCE ’09: Proceedings of the Eighth Interna-

tional Conference on Generative Programming and Component Engineering,

246

ACM, New York, NY, 2009, pp. 5–14.

[195] D. Wonnacott, Using Accessory Functions to Generalize Dynamic Dispatch

in Single-Dispatch Object-Oriented Languages, in: COOTS’01: 6th USENIX

Conference on Object-Oriented Technologies and Systems, San Antonio, TX,

USENIX, 2001, pp. 93–102.

[196] A. Wöß, M. Löberbauer, H. Mössenböck, LL(1) Conflict Resolution in a Re-

cursive Descent Compiler Generator, in: JMLC’03: Joint Modular Languages

Conference, Vol. 2789 of LNCS, Springer, 2003, pp. 192–201.

247

APPENDIX A

INPUT LANGUAGE OF THE PATTERN MATCH GENERATOR

Extensions to the XPR grammar that support the definition of patterns. The start

production is query seq.

query seq
: query obj query seq
| /∗ empty ∗/
;

query obj
: PATTERN

query head
opt hole decls
’{’ pattern seq ’}’
;

hole init entry
: type id hole init
| built in type
| literal
| ELLIPSIS
;

hole init seq
: hole init entry ’,’ hole init seq
| hole init entry
;

hole init
: ’(’ hole init seq ’)’
| ’(’ ’)’
| /∗ empty ∗/
;

hole decl
: ID ’:’ hole init entry ’;’
;

opt hole decls
: hole decl opt hole decls
| /∗ empty ∗/
;

list suffix
: ELLIPSIS
| /∗ empty ∗/
;

action
: PAM QUERY
| PAM QUERY block
;

expr pattern
: expr action
;

pam stmt

248

: expr eod
;

stmt pattern
: pam stmt action
;

type pattern
: type name action
;

exprlist pattern
: pam expr list action
;

expr pattern seq
: expr pattern ’;’ expr pattern seq
| /∗ empty ∗/
;

exprlist pattern seq
: exprlist pattern ’;’ exprlist pattern seq
| /∗ empty ∗/
;

stmt pattern seq
: stmt pattern ’;’ stmt pattern seq
| /∗ empty ∗/
;

type pattern seq
: type pattern ’;’ type pattern seq
| /∗ empty ∗/
;

pattern seq
: PAM EXPR expr pattern seq
| PAM EXPRLIST exprlist pattern seq
| PAM STMT stmt pattern seq
| PAM TYPE type pattern seq
;

path selector
: /∗ empty.

The rule’s semantic action pushes a token indicating the parse
context (PAM EXPR, PAM EXPRLIST, PAM STMT, PAM TYPE) back on the
token stream. The token determines the alternative in pattern seq. ∗/

;

query param entry
: ID ’:’ type name
| ID ’:’ type name ’=’ value expr
;

query param seq
: query param entry ’,’ query param seq
| query param entry
;

query params
: ’(’ query param seq ’)’
| ’(’ ’)’
;

query head
: ID ’<’ type id ’>’ query params
;

pam expr list
: expr list list suffix
| list suffix
;

249

XPR grammer for parsing expressions and statements. To support the definition of

patterns on expression lists, any reference to the rule expr list has been replaced

by a reference to pam expr list.

stmts
: stmt list
| /∗ empty ∗/
;

stmt list
: expr eod
| expr eod stmt list
;

eod : BCPL COMMENT ’{’ attributes ’}’
| ’;’
;

type name
: basic type
| type opers basic type
;

type opers
: type oper
| type oper type opers
;

type oper
: ’∗’
| ’&’
| CONST
| VOLATILE
| ’[’ expr ’]’
| ’[’ ’]’
| ’(’ function parameters ’)’ opt spec
| TL template parameters TG
;

opt spec
: THROW ’(’ ’)’
| THROW ’(’ ELLIPSIS ’)’
| THROW ’(’ type id list ’)’
| /∗ no exception specification ∗/
;

type id list
: type id
| type id ’,’ type id list
;

template parameters
: template parameter
| template parameter ’,’ template parameters
| /∗ empty ∗/
;

template parameter
: ID
| ID ’:’ type id
| ID ’:’ TYPENAME
| TYPENAME
;

function parameters
: function parameter
| function parameter ’,’ function parameters

250

| /∗ empty ∗/
;

function parameter
: type name opt initializer
| id ’:’ type name opt initializer
| ELLIPSIS
;

built in type
: VOID
| BOOL
| CHAR
| INT
| SHORT
| FLOAT
| LONG
| LONG LONG /∗ not C++ ∗/
| DOUBLE
| LONG DOUBLE
| SIGNED basic type
| UNSIGNED CHAR
| UNSIGNED INT
| UNSIGNED SHORT
| UNSIGNED LONG
| UNSIGNED LONG LONG /∗ not C++ ∗/
;

basic type
: built in type
| type id
;

special id
: OPERATOR cast oper TL basic type TG
| OPERATOR cast oper TL basic type TG AT INT VALUE
| OPERATOR oper
| OPERATOR oper AT INT VALUE
| special name
;

id
: ID
| ID AT INT VALUE
| THIS
| THIS AT INT VALUE
;

tid
: id
| id TL pam expr list TG
;

type id
: tid
| QUAL tid
| type id QUAL tid
;

eid
: special id
| tid
;

expr id
: eid
| QUAL eid
| type id QUAL eid
;

251

arg list
: ’(’ pam expr list ’)’
;

expr list
: expr
| expr ’,’ expr list
;

primary expr
: literal
| expr id
| ’(’ expr ’)’
;

postfix expr
: primary expr
| postfix expr ’[’ expr ’]’
| postfix expr arg list
| postfix expr DOT type id
| postfix expr DOT REF type id
| postfix expr ARROW type id
| postfix expr ARROW REF type id
| postfix expr INCR
| postfix expr DECR
;

unary oper
: ’∗’
| ’&’
| ’+’
| ’−’
| INCR
| DECR
| ’˜’
| ’!’
;

value expr
: unary oper value expr
| postfix expr
| postfix expr binary oper value expr
| postfix expr ’?’ value expr ’:’ value expr
| TYPEID ’(’ expr ’)’
| SIZEOF TL type name TG ’(’ ’)’
| SIZEOF ’(’ expr ’)’
| cast oper TL type name TG ’(’ value expr ’)’
| NEW type id opt initializer
| RETURN value expr
;

block
: ’{’ stmts ’}’
;

expr
: value expr
| IF cond block ELSE block
| GOTO ID
| LABEL ID ’:’ expr
| SWITCH cond expr
| CASE value expr ’:’ expr
| DEFAULT ’:’ expr
| BREAK
| DO expr WHILE cond
| WHILE cond expr
| FOR ’(’ opt expr ’;’ opt expr ’;’ opt expr ’)’ expr

252

| DELETE value expr
| DELETE ’[’ ’]’ value expr
| THROW value expr
| THROW
;

opt expr
: expr
| /∗ empty ∗/
;

cond
: ’(’ expr ’)’
;

opt initializer
: initializer
| /∗ empty ∗/
;

initializer
: ’(’ expr ’)’
;

cast oper
: CAST
| STATIC CAST
| DYNAMIC CAST
| REINTERPRET CAST
| CONST CAST
;

binary oper
: ’∗’
| ’/’
| ’%’
| ’+’
| ’−’
| ’<’
| ’>’
| EQ
| NE
| LE
| GE
| ’=’
| LS
| RS
| ’&’
| ’ˆ’
| ’|’
| LAND
| LOR
| MUL EQ
| DIV EQ
| MOD EQ
| PLUS EQ
| MINUS EQ
| LS EQ
| RS EQ
| AND EQ
| OR EQ
| XOR EQ
| COMMA
;

literal
: INT VALUE
| STRING VALUE

253

| FLOAT VALUE
| CHAR VALUE
| BOOL VALUE
;

attributes
: attribute
| attributes attribute
;

attribute
: ’(’ ID ’,’ literal ’)’
;

/∗ BITFIELD ∗/

special name
: CTOR
| CTOR AT INT VALUE
| DTOR
| DTOR AT INT VALUE
;

oper
: binary oper
| UNARY unary oper
| INCR
| DECR
| ’(’ ’)’
| ’[’ ’]’
| DOT
| DOT REF
| ARROW
| ARROW REF
;

254

VITA

Name: Peter Mathias Pirkelbauer

Address: Lawrence Livermore National Laboratory

7000 East Ave.

Livermore, CA, 94551

Email Address: pirkelbauer@acm.org

Education: Dipl.-Ing. Informatik, Johannes-Kepler Universität, Linz,

Austria, 1997

M.B.A., Texas A&M University, 2003

