1,486 research outputs found

    Open Cross-Domain Visual Search

    Get PDF
    This paper addresses cross-domain visual search, where visual queries retrieve category samples from a different domain. For example, we may want to sketch an airplane and retrieve photographs of airplanes. Despite considerable progress, the search occurs in a closed setting between two pre-defined domains. In this paper, we make the step towards an open setting where multiple visual domains are available. This notably translates into a search between any pair of domains, from a combination of domains or within multiple domains. We introduce a simple -- yet effective -- approach. We formulate the search as a mapping from every visual domain to a common semantic space, where categories are represented by hyperspherical prototypes. Open cross-domain visual search is then performed by searching in the common semantic space, regardless of which domains are used as source or target. Domains are combined in the common space to search from or within multiple domains simultaneously. A separate training of every domain-specific mapping function enables an efficient scaling to any number of domains without affecting the search performance. We empirically illustrate our capability to perform open cross-domain visual search in three different scenarios. Our approach is competitive with respect to existing closed settings, where we obtain state-of-the-art results on several benchmarks for three sketch-based search tasks.Comment: Accepted at Computer Vision and Image Understanding (CVIU

    Sketch-an-Anchor: Sub-epoch Fast Model Adaptation for Zero-shot Sketch-based Image Retrieval

    Full text link
    Sketch-an-Anchor is a novel method to train state-of-the-art Zero-shot Sketch-based Image Retrieval (ZSSBIR) models in under an epoch. Most studies break down the problem of ZSSBIR into two parts: domain alignment between images and sketches, inherited from SBIR, and generalization to unseen data, inherent to the zero-shot protocol. We argue one of these problems can be considerably simplified and re-frame the ZSSBIR problem around the already-stellar yet underexplored Zero-shot Image-based Retrieval performance of off-the-shelf models. Our fast-converging model keeps the single-domain performance while learning to extract similar representations from sketches. To this end we introduce our Semantic Anchors -- guiding embeddings learned from word-based semantic spaces and features from off-the-shelf models -- and combine them with our novel Anchored Contrastive Loss. Empirical evidence shows we can achieve state-of-the-art performance on all benchmark datasets while training for 100x less iterations than other methods

    Progressive Domain-Independent Feature Decomposition Network for Zero-Shot Sketch-Based Image Retrieval

    Full text link
    Zero-shot sketch-based image retrieval (ZS-SBIR) is a specific cross-modal retrieval task for searching natural images given free-hand sketches under the zero-shot scenario. Most existing methods solve this problem by simultaneously projecting visual features and semantic supervision into a low-dimensional common space for efficient retrieval. However, such low-dimensional projection destroys the completeness of semantic knowledge in original semantic space, so that it is unable to transfer useful knowledge well when learning semantic from different modalities. Moreover, the domain information and semantic information are entangled in visual features, which is not conducive for cross-modal matching since it will hinder the reduction of domain gap between sketch and image. In this paper, we propose a Progressive Domain-independent Feature Decomposition (PDFD) network for ZS-SBIR. Specifically, with the supervision of original semantic knowledge, PDFD decomposes visual features into domain features and semantic ones, and then the semantic features are projected into common space as retrieval features for ZS-SBIR. The progressive projection strategy maintains strong semantic supervision. Besides, to guarantee the retrieval features to capture clean and complete semantic information, the cross-reconstruction loss is introduced to encourage that any combinations of retrieval features and domain features can reconstruct the visual features. Extensive experiments demonstrate the superiority of our PDFD over state-of-the-art competitors

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author

    ACNet: Approaching-and-Centralizing Network for Zero-Shot Sketch-Based Image Retrieval

    Full text link
    The huge domain gap between sketches and photos and the highly abstract sketch representations pose challenges for sketch-based image retrieval (\underline{SBIR}). The zero-shot sketch-based image retrieval (\underline{ZS-SBIR}) is more generic and practical but poses an even greater challenge because of the additional knowledge gap between the seen and unseen categories. To simultaneously mitigate both gaps, we propose an \textbf{A}pproaching-and-\textbf{C}entralizing \textbf{Net}work (termed "\textbf{ACNet}") to jointly optimize sketch-to-photo synthesis and the image retrieval. The retrieval module guides the synthesis module to generate large amounts of diverse photo-like images which gradually approach the photo domain, and thus better serve the retrieval module than ever to learn domain-agnostic representations and category-agnostic common knowledge for generalizing to unseen categories. These diverse images generated with retrieval guidance can effectively alleviate the overfitting problem troubling concrete category-specific training samples with high gradients. We also discover the use of proxy-based NormSoftmax loss is effective in the zero-shot setting because its centralizing effect can stabilize our joint training and promote the generalization ability to unseen categories. Our approach is simple yet effective, which achieves state-of-the-art performance on two widely used ZS-SBIR datasets and surpasses previous methods by a large margin.Comment: the paper is under consideration at IEEE Transactions on Circuits and Systems for Video Technolog

    CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not

    Full text link
    In this paper, we leverage CLIP for zero-shot sketch based image retrieval (ZS-SBIR). We are largely inspired by recent advances on foundation models and the unparalleled generalisation ability they seem to offer, but for the first time tailor it to benefit the sketch community. We put forward novel designs on how best to achieve this synergy, for both the category setting and the fine-grained setting ("all"). At the very core of our solution is a prompt learning setup. First we show just via factoring in sketch-specific prompts, we already have a category-level ZS-SBIR system that overshoots all prior arts, by a large margin (24.8%) - a great testimony on studying the CLIP and ZS-SBIR synergy. Moving onto the fine-grained setup is however trickier, and requires a deeper dive into this synergy. For that, we come up with two specific designs to tackle the fine-grained matching nature of the problem: (i) an additional regularisation loss to ensure the relative separation between sketches and photos is uniform across categories, which is not the case for the gold standard standalone triplet loss, and (ii) a clever patch shuffling technique to help establishing instance-level structural correspondences between sketch-photo pairs. With these designs, we again observe significant performance gains in the region of 26.9% over previous state-of-the-art. The take-home message, if any, is the proposed CLIP and prompt learning paradigm carries great promise in tackling other sketch-related tasks (not limited to ZS-SBIR) where data scarcity remains a great challenge. Project page: https://aneeshan95.github.io/Sketch_LVM/Comment: Accepted in CVPR 2023. Project page available at https://aneeshan95.github.io/Sketch_LVM
    • …
    corecore