3,239 research outputs found

    Semantic segmentation priors for object discovery

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Reliable object discovery in realistic indoor scenes is a necessity for many computer vision and service robot applications. In these scenes, semantic segmentation methods have made huge advances in recent years. Such methods can provide useful prior information for object discovery by removing false positives and by delineating object boundaries. We propose a novel method that combines bottom-up object discovery and semantic priors for producing generic object candidates in RGB-D images. We use a deep learning method for semantic segmentation to classify colour and depth superpixels into meaningful categories. Separately for each category, we use saliency to estimate the location and scale of objects, and superpixels to find their precise boundaries. Finally, object candidates of all categories are combined and ranked. We evaluate our approach on the NYU Depth V2 dataset and show that we outperform other state-of-the-art object discovery methods in terms of recall.Peer ReviewedPostprint (author's final draft

    Generalized Category Discovery in Semantic Segmentation

    Full text link
    This paper explores a novel setting called Generalized Category Discovery in Semantic Segmentation (GCDSS), aiming to segment unlabeled images given prior knowledge from a labeled set of base classes. The unlabeled images contain pixels of the base class or novel class. In contrast to Novel Category Discovery in Semantic Segmentation (NCDSS), there is no prerequisite for prior knowledge mandating the existence of at least one novel class in each unlabeled image. Besides, we broaden the segmentation scope beyond foreground objects to include the entire image. Existing NCDSS methods rely on the aforementioned priors, making them challenging to truly apply in real-world situations. We propose a straightforward yet effective framework that reinterprets the GCDSS challenge as a task of mask classification. Additionally, we construct a baseline method and introduce the Neighborhood Relations-Guided Mask Clustering Algorithm (NeRG-MaskCA) for mask categorization to address the fragmentation in semantic representation. A benchmark dataset, Cityscapes-GCD, derived from the Cityscapes dataset, is established to evaluate the GCDSS framework. Our method demonstrates the feasibility of the GCDSS problem and the potential for discovering and segmenting novel object classes in unlabeled images. We employ the generated pseudo-labels from our approach as ground truth to supervise the training of other models, thereby enabling them with the ability to segment novel classes. It paves the way for further research in generalized category discovery, broadening the horizons of semantic segmentation and its applications. For details, please visit https://github.com/JethroPeng/GCDS

    From Image-level to Pixel-level Labeling with Convolutional Networks

    Get PDF
    We are interested in inferring object segmentation by leveraging only object class information, and by considering only minimal priors on the object segmentation task. This problem could be viewed as a kind of weakly supervised segmentation task, and naturally fits the Multiple Instance Learning (MIL) framework: every training image is known to have (or not) at least one pixel corresponding to the image class label, and the segmentation task can be rewritten as inferring the pixels belonging to the class of the object (given one image, and its object class). We propose a Convolutional Neural Network-based model, which is constrained during training to put more weight on pixels which are important for classifying the image. We show that at test time, the model has learned to discriminate the right pixels well enough, such that it performs very well on an existing segmentation benchmark, by adding only few smoothing priors. Our system is trained using a subset of the Imagenet dataset and the segmentation experiments are performed on the challenging Pascal VOC dataset (with no fine-tuning of the model on Pascal VOC). Our model beats the state of the art results in weakly supervised object segmentation task by a large margin. We also compare the performance of our model with state of the art fully-supervised segmentation approaches.Comment: CVPR201

    Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation

    Get PDF
    We propose an approach to discover class-specific pixels for the weakly-supervised semantic segmentation task. We show that properly combining saliency and attention maps allows us to obtain reliable cues capable of significantly boosting the performance. First, we propose a simple yet powerful hierarchical approach to discover the class-agnostic salient regions, obtained using a salient object detector, which otherwise would be ignored. Second, we use fully convolutional attention maps to reliably localize the class-specific regions in a given image. We combine these two cues to discover class-specific pixels which are then used as an approximate ground truth for training a CNN. While solving the weakly supervised semantic segmentation task, we ensure that the image-level classification task is also solved in order to enforce the CNN to assign at least one pixel to each object present in the image. Experimentally, on the PASCAL VOC12 val and test sets, we obtain the mIoU of 60.8% and 61.9%, achieving the performance gains of 5.1% and 5.2% compared to the published state-of-the-art results. The code is made publicly available
    • …
    corecore