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Abstract

We propose an approach to discover class-specific pixels for the weakly-supervised
semantic segmentation task. We show that properly combining saliency and attention
maps allows us to obtain reliable cues capable of significantly boosting the performance.
First, we propose a simple yet powerful hierarchical approach to discover the class-
agnostic salient regions, obtained using a salient object detector, which otherwise would
be ignored. Second, we use fully convolutional attention maps to reliably localize the
class-specific regions in a given image. We combine these two cues to discover class-
specific pixels which are then used as an approximate ground truth for training a CNN.
While solving the weakly supervised semantic segmentation task, we ensure that the
image-level classification task is also solved in order to enforce the CNN to assign at
least one pixel to each object present in the image. Experimentally, on the PASCAL
VOC12 val and test sets, we obtain the mIoU of 60.8% and 61.9%, achieving the perfor-
mance gains of 5.1% and 5.2% compared to the published state-of-the-art results. The
code is made publicly available.

1 Introduction
Convolutional Neural Networks (CNNs) are extremely successful in solving structured out-
put prediction tasks such as semantic segmentation [4, 5, 19, 35], where the goal is to assign
a semantic class label to each pixel. The prediction accuracy of CNNs in these tasks is heav-
ily reliant on the large amounts of pixel-level annotated datasets [8, 17]. The collection of
such datasets is an extremely laborious task – it takes almost four minutes on average to
annotate all the pixels in an image [3, 8]. Additionally, pixel-level annotation becomes an
impediment when it comes to scaling the segmentation networks to new object categories.

To counter this curse of pixel-level annotation, recently, the focus has shifted towards
weakly- and semi-supervised semantic segmentation methods which require reduced level
of annotations. These methods incorporate any one or more of the following supervisions:
image labels, bounding boxes, squiggles, spots etc. [12, 14, 24, 25, 26, 27, 33, 34]. Among
these supervisions image-level labels are easiest to collect – almost 1 second per class or
object-category [22] – and also are amenable to webly-supervised learning where one can
download millions of images of new object categories from the Internet for training. Hence,
in this work we focus on the image level labels-based supervision.

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Chandra and Kokkinos} 2016

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2014

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

Citation
Citation
{Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, and Torr} 2015

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M  {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Bearman, Russakovsky, Ferrari, and Fei-Fei} 2016

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M  {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Hou, Dokania, Massiceti, Wei, Cheng, and Torr} 2016

Citation
Citation
{Kolesnikov and Lampert} 2016

Citation
Citation
{Papandreou, Chen, Murphy, and Yuille} 2015{}

Citation
Citation
{Pathak, Krahenbuhl, and Darrell} 2015

Citation
Citation
{Pinheiro and Collobert} 2015

Citation
Citation
{Qi, Liu, Shi, Zhao, and Jia} 2016

Citation
Citation
{Wei, Liang, Chen, Shen, Cheng, Feng, Zhao, and Yan} 2016

Citation
Citation
{Wei, Feng, Liang, Cheng, Zhao, and Yan} 2017

Citation
Citation
{Papadopoulos, Clarke, Keller, and Ferrari} 2014



2 CHAUDHRY ET AL.: DCSP

Concretely, we combine so called attention and saliency cues to discover class-specific
pixels in images that act as approximate/ weak ground-truth for training. Here the term at-
tention is used to refer to the pixels in an image change in which affects the score of the class
to be classified the most. There are different ways to localize these kind of discriminant
pixels in an image. Motivated by [36] we use global average pooling based classifier archi-
tecture to localize the discriminant pixels. We extend [36] to a fully convolutional setting to
get multi-object dense attention maps. We call this network a Fully Convolutional Attention
Network (FCAN) (section 4.1). Note that the FCAN is trained using only image labels, and
the attention maps we obtain are class-specific.

We use the term Saliency to refer to the binary masks that detect visually noticeable
foreground objects in an image. These masks are class-agnostic and provide complimentary
information to the class-specific attention maps as they focus only on the foreground objects.
In particular we use a salient object detector [18] to obtain salient region masks. One major
limitation of such salient object detectors is their inability to detect multiple salient objects
in an image. We propose an Hierarchical Saliency method (section 4.2) that employs an
iterative erasing strategy to rectify this problem. The saliency detector [18] is trained using
class-agnostic salient region masks.

The attention cues, obtained from the FCAN, focus only on the most discriminative part
of an object, and do not provide any information on the extent of the object. On the other
hand, the saliency cues give objectness information but are class-agnostic. We combine
attention and saliency maps to obtain pixel-level class-specific approximate ground-truth to
train a segmentation network.

Our training objective consists of a segmentation loss and an auxiliary classification loss.
As the training progresses, we adapt (update) the pixel-level cues. The intuition behind the
adaptive approach is that as the network trains under a finer loss function (pixel-wise cross-
entropy), the localization cues must improve (experimentally verified) and, hence, it makes
sense to iteratively update them. Given that the saliency maps can be obtained using any
off-the-shelf saliency detector, our approach is end-to-end trainable.

With this very simple technique, we obtain the mIoU of 60.8% and 61.9% on the PAS-
CAL VOC 2012 val and test sets for the weakly supervised semantic segmentation task
using image labels, achieving new state-of-the-art results.

2 Related Works
Papandreou et al. [24] employed Expectation-Maximization to solve weakly-supervised se-
mantic segmentation using annotated bounding boxes and image labels. Similarly, Hou et
al. [12] also relied on an EM inspired approach, however, they used image labels and saliency
masks for the supervision. Di et al. [16] make use of scribbles to train the segmentation net-
work where scribbles provide few pixels for which the ground truth labels are known. Simi-
larly, Bearman et al. [3] combines annotated points with objectness priors as the supervisory
signals. Some approaches employ only image labels such as Pathak et al. [25] and Pinheiro et
al. [26]. Pathak et al. framed the segmentation problem as a constrained optimization prob-
lem, whereas, Pinheiro et al. posed the problem as a multiple instance learning problem.
Wei et al. [33] proposed a simple to complex framework where a network is first trained us-
ing simple images (single object category) followed by training over complex ones (multiple
objects). Qi et al. [27] proposed to link semantic segmentation and object localization with
proposal selection module, where generated proposals came from MCG [2]. Kolesnikov and
Lampert [14] proposed multiple loss functions that can be combined to improve the training.
Recently, Wei et al. [34] proposed an adversarial erasing scheme in order to obtain better
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Figure 1: Discovering Class-Specific Pixels: I, A, and S1 represent the input image, the fully
convolutional attention map (for both ‘bike’ and ‘person’, see Section 4.1) and the initial
saliency map [18]. S2 and S3 represent the saliency maps obtained after first and second
erasing. Superscripts ‘b’ and ‘p’ are used to show ‘bike’ and ‘person’ specific cues. Notice
that, in the case of S2 and S3, more salient objects are discovered (for example, objects in
the top right of the image). A1, A2 and A3 represents the attention maps obtained using the
combination of A with S1, S2 and S3, respectively. Comparing A and A3, it is evident that
the attention map has improved significantly. Also, many false activations are removed and
class-specific pixels are being discovered with high confidence.

attention maps which in turn provide better cues for the training.
Our work is closest to [12, 34], but in contrast to [34], we do not employ erasing to

expand attention maps which requires retraining of an attention/classification network after
each erasing. Instead, we erase to discover new salient regions and keep the attention network
intact. This way, the same saliency network can be used after each erasing to discover
new salient regions. Additionally, instead of using different networks for the attention and
segmentation tasks, as done by [34], we use a single network and train it end-to-end for
both the tasks. This helps us in progressively obtaining better attention cues. Similar to [12]
we employ attention and saliency based cues. However, [12] considered a simpler case –
images with a single object category – and did not extend these cues for images with multiple
objects.

3 Preliminaries
Saliency There exists multiple definitions of saliency in the computer vision literature. The
eye-fixation view [15] of saliency computes a probabilistic map of an image to predict actual
human eye gaze patterns. Alternatively, the salient object detection view generates a binary
mask that detects important regions from natural images [29]. In this work, we employ the
latter definition of saliency (see the second row in Figure 1) and explicitly use [18] as our
baseline saliency detector.

Attention Map Similar to saliency, attention is also a vaguely defined term in the literature.
The definition that we use treats attention as a set of pixels in an image towards which the
CNN is most sensitive while classifying the image belonging to a certain object category.
Formally, given an image I consisting of m object categories, the attention map (Ac) assigns
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Figure 2: A schematic illustration of our proposed approach. We use the same network for
both image classification and semantic segmentation tasks. This allows us to obtain attention
maps in a fully convolutional manner, without training a new classification network. Arrows
with green head represent the backward pass. Refer to Section 4 for further details.

a score ∈ [0,1] to each pixel representing the likeliness of the pixel belonging to the c-th
object category (see the third row in Figure 1).

Weakly-Supervised Semantic Segmentation Given an image I, and a label setL= {l0, l1,
· · · , lp}, where p is the total number of classes and l0 represents the background label. The
semantic segmentation task is to assign a label from L to each pixel in the image I. In the
case of fully supervised setting, the dataset D consists of images and their corresponding
pixel-level class-specific annotations (expensive pixel-level annotations). However, in the
weakly-supervised setting, the dataset consists of images and corresponding annotations that
are relatively easy to obtain, such as tags/ labels of objects present in the image. Let us de-
fine Z = L\l0 to be the set of total object labels we are interested in. Thus, the dataset in our
case is D = {Ii,zi}N

i=1, where zi ⊆ Z are the object labels present in the i-th image. The goal
thus is to learn the CNN parameters (θ ) for the semantic segmentation task using the weak
dataset D.

4 Discovering Class-Specific Pixels for Weakly-Supervised
Semantic Segmentation

To train a CNN for the semantic segmentation task, we need pixel-level annotations. In the
case of weakly-supervised setting, the challenge is to approximate these annotations from
image labels and other weak cues such as saliency. To obtain such approximate annotations
our approach consists of three main components. First, the fully convolutional attention
network (Section 4.1) for multiple object categories that allows us to reliably localize ob-
jects in an image. Second, mining of salient regions using a simple hierarchical approach
(Section 4.2). Third, making use of pixel-level class-specific information obtained using
the combination of attention and saliency based cues to guide the training algorithm (Sec-
tion 4.3). In what follows, we talk about each of these components in detail.
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4.1 Fully Convolutional Attention Network
It is well known that while classifying an object CNN-based classifiers focus more on cer-
tain discriminative areas (pixels) of an object in an image [36]. This property of CNNs
is extensively utilized by different approaches [31, 32, 36] in localizing objects in images.
Some of the approaches [31, 32] use image gradients to localize objects while others [36]
use global average pooling (GAP) based classifier architecture. We study the latter approach,
and propose a convolutional variant of Class Activation Mapping (CAM) [36]. CAM uses a
standard CNN, and just before the final classification layer, it averages the activations across
each channel by using a GAP layer. It then passes the averaged activations through a Fully-
Connected (FC) layer that produces the final class scores. It can be shown that CAM is
essentially taking an inner product between the class-specific weights (FC layer parameters)
and the pixel-wise feature vectors (last convolutional feature map) to obtain attention. We
propose an FCAN where, instead of FC weights, we use class-specific convolutional fil-
ters and push the GAP layer at the end. Specifically, we obtain multi-object attention maps
(shown as ‘Attention Volume’ in Figure 2) by taking the inner product between the class-
specific convolutional filters and the penultimate feature volume in the network, followed by
averaging the activations using a GAP layer. This allows us to use the segmentation network
directly to obtain the attention maps, instead of training a separate classification network. In
detail, we re-purpose the fully convolutional segmentation network [6] to solve the classifi-
cation task by adding |Z| additional convolutional filters of size 1×1×K to the last layer of
the segmentation network, where K is the channel dimension of the last layer of the standard
segmentation network (typically K = |L|). Note that, we do not employ convolutional filter
for the background as we are interested in only localizing the foreground objects, which in
turn can help us find the cues for the background as well. We then add a GAP layer (we
find that, Global Max Pooling, as suggested by [21], underestimates the size of the objects)
on the last convolution volume to obtain class-specific confidence scores for an image. As
in [21], we treat the multi-label classification problem as |Z| independent binary classifica-
tion problems to train the network under following objective:

`c(θ) =
1
N

N

∑
i=1
−z̄i log(σ(ẑi))− (1− z̄i) log(1−σ(ẑi)) (1)

where z̄i, ẑi and σ(.) are the ground-truth image-level label vector (‘1’ if the object is present,
otherwise, ‘0’), network prediction scores and the sigmoid function, respectively. All the
operations in equation (1) are element-wise. Once the network is trained under this objective,
the last convolution volume represents the attention volume V for |Z| categories, as show in
the Figure 2. Then, the attention maps for a given image is obtained as the set of attention
maps/slices of the attention volume V corresponding to the object categories z present in the
image. Formally, we obtain the normalized attentions Ai for the i-th image as Ai =

⋃
c∈zi

Ac
i ,

where Ac
i represents the normalized attention map for the i-th image corresponding to the

c-th object category. We normalize each slice of the volume V independently between 0 to 1
to obtain Ac

i . Note that, we use atrous convolutions [6, 11] to keep the prediction resolution
sufficiently large in the last layers of the network, thus, there is no need to calculate the
attentions at the earlier layers to get the finer details.

Although, as explained earlier, the global average pooling forces the CNN to expand the
attention maps, this spread is still limited and in some cases even stretches to background
pixels as can be seen in the Figure 1. In other words, even though the attention maps that
we obtain using the fully convolutional approach are quite accurate in locating an object,
they are not very precise when it comes to pixel-level localization which is very crucial for
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Algorithm 1 Discovering Class-Specific Pixels
Input: Image Labels z; Saliency Map S; Attention Maps A; γ

1: M = zeros(n), where n is the number of pixels
2: for for each c ∈ z and each pixel m do
3: H(m,c) = h(Ac(m),S(m))
4: end for
5: for for each pixel m do
6: if H(m)< γ then . H(m) has |z| elements
7: M(m) = l0 . Assign background
8: else
9: M(m) = argmax(H(m)) . Assign foreground

10: end if
11: end for
Output: Localization cues or approximate labeling M

obtaining pixel-level class-specific cues for the weakly-supervised segmentation task. In
the next section we partially address this issue by combining these attention maps with the
class-agnostic saliency maps that we obtain using a simple hierarchical approach.

4.2 Hierarchical Saliency For Multiple Salient Objects
One of the major limitations of salient object detectors such as [18], is that they often fail to
detect multiple salient objects in an image. An example of such a case is shown in the Fig-
ure 1. To address this, we propose a simple hierarchical approach that allows the saliency net-
work to discover new salient regions. In more detail, given a salient region detector [18], we
first find the most salient region by thresholding the output of the saliency detector, and then
remove/erase it from the image by replacing its pixel values by the average pixel value over
the entire dataset and pass the image with the erased regions again through the saliency detec-
tor. Formally, let us denote S1 and Se

2 as the saliency maps of the given image and the image
obtained after the first erasing, respectively. Then, we combine S1 and Se

2 to obtain S2 by
assigning the maximum saliency score to each pixel i as follows, S2(i) = max(S1(i),Se

2(i)).
This allows the saliency detector to discover the next most salient region in the same im-
age. As shown in the Figure 1 (shown for two erasing steps), this simple approach allows
the saliency detector to obtain saliency maps for images containing multiple salient objects.
Note that, as opposed to [34], hierarchical saliency detection method does not require the re-
training of the network after each erasing and can utilize any off-the-shelf saliency detector
without any modifications.

As mentioned earlier, the attention maps give us the class-specific information and cor-
responding landmark regions for the categories present in the image, whereas, saliency gives
us the foreground/background cues. Neither attention nor saliency individually can provide
reliable pixel-level class-specific cues. Thus, we combine the attention and saliency maps
using a user-defined function h(., .). Specifically, for a given image, we compute the element-
wise harmonic mean (we empirically found it to be better suited than arithmetic or geometric
mean) between each category-specific normalized attention map Ac and the saliency map S,
and obtain the final approximate ground-truth labels using hard thresholding. This procedure
is summarized in Algorithm 1. The user-defined parameter γ in Algorithm 1 represents the
threshold above which a pixel is assigned to the foreground class. The final localization cues
M, obtained using this approach, are reliable and remove many false activations as shown in
the Figure 1. We use these cues to guide the training of the CNN (explained in Section 4.3).
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4.3 Training
The intuition behind our training objective is driven from a simple fact that in order to solve
the weakly-supervised semantic segmentation task the network should also be able to solve
the classification task. Therefore, in addition to the segmentation loss `s (pixel-wise cross-
entropy), we also add an auxiliary classification loss `c (defined in equation (1)), to our final
objective function. These kinds of auxiliary losses have already been explored in the domain
of reinforcement learning [13]. We formally define our training objective as, given an image
Ii, let us denote σ( f m(Ii;θ)) as the network prediction for the m-th pixel consisting of the
soft-max probabilities over the labels L (refer to Figure 2). Let us denote the approximate
ground truth for the m-th pixel as δ m

i ∈ {0,1}|L|, where δ m
i (l) = 1 at the l-th index belonging

to the label category of the m-th pixel obtained using the Algorithm 1. Then, the overall
objective function is defined as:

`(θ) = `c(θ)+ `s(θ) (2)

where, `c(θ) is the classification loss (equation (1)) and `s(θ) =
1
N ∑

N
i=1 ∑

n
m=1 J(σ( f m(Ii;θ))

,δ m
i ). Here, J(., .) is the pixel-wise cross-entropy loss. Additionally, we found that as the

network trains under both the `s and `c, it learns to find even better localization cues as we
have additional segmentation loss focusing on pixel-level accuracy. This becomes the ba-
sis for our adaptive training where we iteratively adapt (update) the localization cues after
a fixed number of training steps (for example, 10K). Formally, at the adapt step, the local-
ization cues are obtained as Mi(m) = argmaxc∈zi∪l0 f m

c (Ii;θ). We then continue to train the
network under the same objective (equation (2)) with these new cues (refer to the Figure 2).

At the test time, we discard the final convolutional layer - meant for the classification
task to obtain attention cues - and obtain the segmentation maps from the penultimate layer.

5 Experimental Results, Comparisons and Analysis
We now describe the dataset and the experimental setup (Section 5.1), followed by the com-
parison of our approach with the current state-of-the-art methods to show that our method
outperforms all the existing methods on the challenging PASCAL VOC 2012 benchmark
(Section 5.2). We then perform some analysis of our approach in Section (5.3) for the pur-
pose of building better understanding of the method.

5.1 Dataset and Experimental Setup
Dataset We evaluate our framework on the challenging PASCAL VOC12 segmentation
benchmark dataset [8], that contains 20 foreground object categories and one background
category. The original dataset contains 1,464 training images. Following common practice
[5, 9, 26], we augment the dataset with the extra annotations provided by [9]. This gives
us total of 10,582 training images. The validation and test sets contain 1,449 and 1,456
images, respectively. No additional data is being used in the entire train/test pipeline.

Saliency Network We employ DHSNet [18] as the saliency detector, and use our hierar-
chical approach (Section 4.2) to allow it to discover different salient regions which is useful
in situations when images contain multiple salient objects. For the first erasing, any pixel
with the saliency score greater than 0.7 is erased from the image and replaced with the aver-
age pixel value. Similarly, a threshold of 0.8 is used for the second erasing.

Unified Attention and Segmentation Network Our unified network is based on DeepLab-
V2 [6] whose parameters are initialized by the ResNet-101 [10] pretrained on ImageNet [7]
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for the classification task. We use Tensorflow [1] to implement the Deeplab 1. We append 20,
1×1×21 convolution filters at the last layer of the segmentation network. The weights of the
last two layers are initialized with the Gaussian having zero mean, 0.01 standard deviation
and biases with zeros. The CNN hyper-parameters used are: momentum (0.9), weight decay
(0.0005), batch size (10). The initial learning rate is set to 0.001 and then ‘poly’ (with 10K
maximum iterations) learning rate policy is deployed as suggested by [6]. We randomly crop
the images to 321×321 and also perform random scaling and mirroring. In order to obtain
our first attention network, we use PASCAL VOC 2012 images to train the above defined
network for 30K iterations under the classification objective as defined in equation (1). We,
then, train the network for 10K iterations optimizing the objective defined in equation (2)
followed by updating/adapting the ground-truth cues and retraining the network for another
10K iterations minimizing the same objective. Note that, the learning rate is reset to 0.001
after the adapt step. Adapting further does not improve results as the network has already
saturated the pixel-level cues obtained from weak image labels. The background threshold
γ (see Algorithm 1) is set to 0.4. Given that the saliency maps are already obtained from the
off-the-shelf saliency detector [18], the complete training framework is end-to-end trainable.

At test time, we calculate the feature maps at three different scales (1, 0.75, 0.5) and
fuse them by taking maximum at each location to obtain the final prediction.

5.2 Comparison with State-of-the-arts
We compare our method (DCSP) with the existing state-of-the-art weakly-/semi-supervised
semantic segmentation approaches. Table 1 shows all the comparisons and Figure 3 shows
segmentation visualizations using our approach. From the results in Table 1, we can verify
that our simple approach outperforms the existing approaches to weakly-supervised semantic
segmentation task on both ‘val’ and ‘test’ sets, thereby, setting the new state-of-the-art. Par-
ticularly, the performance gains on the published state-of-the-art method of Joon et al. [20]
are 5.1% and 5.2% on ‘val’ and ‘test’ sets, respectively. To highlight the fact that the gains of
our proposed approach are not trivial due to the architectural differences (VGG16 vs ResNet-
101), we also report results in Table 1 with VGG16 variant of our model and still maintain
the state-of-the-art performance compared to the published results.

A few of the methods we compare with depends on stronger supervisions such as scrib-
bles, bounding boxes, MCG [2] and spots [3, 24, 27]. In terms of dependencies, along with
image labels, our method uses the saliency network (similar to [12, 34]) that is trained on
class-agnostic salient region masks, so, once trained, the saliency network does not require
retraining for new object categories. Whereas, among the baselines, STC [33] uses addi-
tional data (50K Flickr images) for training. Likewise, Mining Pixels [12] reuses the 24K
ImageNet images along with PASCAL for the segmentation task. Similarly, AugFeed [27]
employs MCG [2] generator which is trained using a fully-supervised dataset (pixel-level
annotation) and, hence, makes use of stronger supervision. Even without these stronger
supervisions, our method consistently outperforms all these baselines.

The most directly comparable methods to our approach, in terms of supervision and ad-
ditional dependencies, are AE-PSL [34] and [20]. Both of these methods, like ours, make
use of image-level tags of only PASCAL VOC dataset for training. AE-PSL [34] requires
retraining of classification network after each erasing using the attention cues, whereas our
method does not need to retrain the saliency detector. This renders our training regime sim-
ple and efficient. Likewise the performance of [20] deteriorates significantly (from 55.7% to

1The code is available at https://github.com/arslan-chaudhry/dcsp_segmentation
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Table 1: Comparison: Weakly-Supervised Semantic
Segmentation Methods on PASCAL VOC12. 1Uses
40K additional images from Flickr. 2Depends on
MCG [2] which requires pixel-level supervision. 3.
Uses ResNet-101 in saliency network. 4. Reuses Im-
ageNet images for segmentation task. Also, manuscript
is unpublished/ not peer-reviewed. 5 Based on ResNet-
101 whereas few other methods use VGG-16 [30].

Methods CRF
mIOU
(Val)

mIOU
(Test)

EM-Adapt [24] 3 38.2% 39.6%

7 33.3% 35.6%
CCNN [25]

3 35.3% -

7 44.3% -
SEC [14]

3 50.7% 51.7%

STC [33] 1 3 49.8% 51.2%

MIL [26] 2 7 42.0% 40.6%

7 50.4% 50.6%
AugFeed [27] 2

3 54.3% 55.5%

Combining Cues [28] 3 52.8% 53.7%

AE-PSL [34] 3 55.0% 55.7%

7 51.2% -
Joon et al. [20] 3

3 55.7% 56.7%

7 56.9% 57.7%
Mining Pixels [12] 4

3 58.7% 59.6%

7 56.5% 57.04%
DCSP-VGG16 (ours)

3 58.6% 59.24%

7 59.5% 60.3%
DCSP-ResNet-101 (ours) 5

3 60.8% 61.9%

Table 2: Ablation analysis of our ap-
proach on PASCAL VOC12 val. We
train the network for 10K iterations,
then adapt the attention cues followed
by training for another 10K iterations.
(All the results are with ResNet-101
unless stated otherwise.)

CRF
Saliency

Mask Adapt mIOU

7
S1

7 55.4%
3 55.7%

S3 (HS)
7 58.5%
3 59.5%

3
S1

7 56.0%
3 56.3%

S3 (HS)
7 60.4%
3 60.8%

Table 3: Effects of Hierarchical Saliency:
Notice how missing objects are being seg-
mented when trained using S3 (examples
are from ‘val’ dataset).

Ground Truth S1 S3 (HS)

Table 4: Effects of jointly training
the saliency and attention cues in
a unified segmentation network (re-
sults are from ’val’ dataset).

Joint Training mIOU
7 48.3%
3 59.5%

51.2%) in the absence of CRF post-processing whereas we maintain the competitive perfor-
mance even without CRF post-processing (60.8% to 59.5%).

5.3 Analysis
In Table 2, we report how the category-specific pixel discovery obtained by combining the
hierarchical saliency along with attention maps improve the results. As shown in the table,
Hierarchical Saliency (S3, fig 1) results in 4.5% gain in mIOU compared to when it is not
being used (S1, fig 1). We also validate this fact qualitatively in Table 3 where it can be
seen that the hierarchical saliency allows us to semantically segment multiple objects which
otherwise would be ignored. Additionally, we also show in Table 2 that adapting the lo-
calization cues as training progresses removes many false positives, thereby, increasing the
prediction accuracy. The qualitative gains of adaptive training and different erasing steps in
the hierarchical saliency approach are further discussed in the supplementary material.
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Image Ground Truth Our Image Ground Truth Our
Figure 3: Few qualitative results on the PASCAL VOC 2012 val set. As can be seen that
the network is able to discover multiple objects and also keeps the boundaries of the objects
intact. Bottom row: Two failure cases where the network fails under sever occlusion.

In Table 4 we discuss the benefit of jointly training the saliency and attention cues in a
unified segmentation network. Experimentally, we observe performance gains of 11.2% in
mIOU as a result of joint training. Intuitively, without joint training, the final segmentation
would be an arithmetic combination of attention and saliency maps, trained separately. Once
trained jointly, we learn a set of parameters that are specific to the combined task and a shared
feature space that generalized well for the segmentation objective than using different feature
space mappings for attention and saliency. Additionally, saliency detector trains parameters
on class-agnostic masks, whereas, segmentation is a class-specific task, hence, joint training
respects the nature of the segmentation objective.

6 Conclusion and Future Work
We proposed a class-specific pixel discovery method for weakly-supervised semantic seg-
mentation. We showed that properly combining class-specific attention cues (FCAN) with
the class-agnostic saliency maps (Hierarchical Saliency) enabled us to reliably obtain pixel-
level class-specific cues to improve the performance of the weakly supervised segmentation
task. We showed the efficacy of our approach using extensive experiments and reported new
state-of-the-art results on PASCAL VOC 2012 dataset.

One major limitation of the weakly-supervised methods is their inability to detect object
boundaries under sever occlusion. This limitation is due to the weak nature of cues that
are used to train such methods. To mitigate this shortcoming, an interesting future direction
would be to explore the edge and shape-based priors in these methods.

Acknowledgements
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Supplementary Material
We further analyse the efficacy of our approach DCSP that combines the fully convolu-
tional attention maps with the hierarchical saliency masks to obtain reliable pixel-level class-
specific cues for the weakly-supervised semantic segmentation task (see Figure 2 in the main
paper). Particularly, we compare the performance of the network at different erasing steps
and the effect of adapting the localization cues during training.

Performance Analysis at Different Erasing Steps
In Tables 5 and 6 we compare the performance gains that we achieve on the weakly-supervised
semantic segmentation task using different erasing steps on PASCAL VOC 2012 val and test
sets, respectively. It can be seen from the tables that we get a significant performance boost
after the first erasing (S2). The network performance, however, remains consistent (albeit
with a small gain) after the second erasing (S3). This could be because, although the PAS-
CAL dataset contains complex images of multiple object categories, the number of salient
objects, on average, still remains small. Hence, in most cases S2 would be sufficient to dis-
cover the multiple salient objects in the images saturating the network performance on the
task.

Another observation from the tables is the poor segmentation accuracy on the categories
like chair, table, sofa etc. For example, in Table 6 the IOUs for chair are 14.9%, 20.9%
and 20.8%, whereas for aeroplane these are 73.7%, 75.6% and 79.4%, after S1, S2 and S3,
respectively. Even though the erasing steps are helping us to improve over these categories,
the final accuracy is still not satisfactory. Note that, even in the case of a full pixel-level
supervision, the IOU on these categories is worse than the other categories (30.7% for chair
compared to 84.4% for aeroplane) [23]. We suspect that this is due to the elongated nature of
the shapes of these categories. For example, in the case of chair a large amount of pixels are
assigned to its elongated legs and failing to localize these regions will incur a significant per-
formance penalty. Additionally, these categories often appear under sever occlusion and thus,
do not maintain a contiguous shape. Since our method approximates the localization cues
by combining the attention and saliency, we are always susceptible to the ground-truth cues
not having the contiguous regions. Hence, objects that often appear as the set of disjointed
regions will not be properly segmented out by our method. Note that, this issue is rampant
in most of the existing weakly-supervised semantic segmentation methods [12, 14, 34]. To
rectify this, one possible solution would be to use edge- and shape-based priors that could
localize these elongated and disjointed regions resulting in a better segmentation accuracy
for such categories.

Adaptive Training
In Figures (4, 5), we qualitatively compare the effects of adapting the ground-truth during the
training. Recall that in the case of adaptive training we update the localization cues by taking
the argmax over the categories present in the image on the segmentation volume (referred to
as f m(Ii;θ) in the main paper). As can be seen from the figures that enforcing the constraint
of image-level labels at the adapt step allows us to remove many false-positive activations.
For example, see how in the first two rows of the figures the background pixels erroneously
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assigned to foreground (person and plane, respectively) are corrected after the adapt step.
Similarly, in the next two rows, extra classes are removed by the adaptive training. This
suggests that using the output of the network constrained by the image labels at the adapt
step produces more refined cues for training.

Table 5: Comparison of segmentation accuracies by our method (DCSP) for object categories
using different Hierarchical Saliency steps on PASCAL VOC 2012 val set. S1, S2 and S3 are
the saliency maps of the original image, image after first erasing and image after second
erasing, respectively.

Category
S1

IoU(%)
S2

IoU(%)
S3

IoU(%)
w/o CRF w CRF w/o CRF w CRF w/o CRF w CRF

bcgd 87.6 87.8 88.5 89 88.3 88.9
aeroplane 72 74.3 73.2 76.3 74.9 77.65

bicycle 29.3 28.2 31.9 32.5 31 31.3
bird 75.4 77.7 71.3 74.5 69.3 73.2
boat 58.4 59 59.1 60.8 58.3 59.8

bottle 63.7 64.1 67.8 69.8 69.4 71.0
bus 61.7 62.2 74.3 74.9 77.6 79.2
car 68.5 69.3 72.9 74.1 72.3 74.5
cat 80.4 83 79.7 82.5 77.9 80

chair 11.6 10.7 14.4 13.2 16.4 15.1
cow 69.1 70.6 73.3 75.3 71.4 73.3

diningtable 3.6 3 6.8 6.3 12 10.2
dog 74.8 76.8 74.5 76.9 74.1 76.1

horse 62.9 64.3 71.4 74.7 69.3 72.21
motorbike 64.5 64.9 69.1 70.1 68 69.1

person 66.6 67.6 70.1 71.4 70.5 72.1
pottedplant 34 33.8 39.7 40 39.2 39.9

sheep 63.4 64.2 70.4 73 70.7 73.9
sofa 12.6 12.3 17.1 17.1 15.8 14.6
train 58.7 57.5 71.4 72.3 69.8 70.3

tvmonitor 51.8 51.4 52.3 53.4 52.6 53.1
Average 55.7 56.3 59.5 60.8 59.5 60.8
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Table 6: Comparison of segmentation accuracies by our method (DCSP) for object categories
using different Hierarchical Saliency steps on PASCAL VOC 2012 test set. S1, S2 and S3
are the saliency maps of the original image, image after first erasing and image after second
erasing, respectively.

Category
S1

IoU(%)
S2

IoU(%)
S3

IoU(%)
w/o CRF w CRF w/o CRF w CRF w/o CRF w CRF

bcgd 88.3 88.5 88.9 89.3 88.8 89.3
aeroplane 72.4 73.7 73.1 75.6 76.7 79.4

bicycle 29.6 29.2 30.7 31.6 31.4 32.5
bird 73.1 75.7 68.6 71.3 69.3 72.9
boat 49.0 49.5 51.5 53.2 49.7 51.7

bottle 63 63.5 66.6 68.2 64.4 66.4
bus 61.6 61.7 74.2 75.3 76.7 77.2
car 74.9 75.8 75.9 76.9 75.9 77.3
cat 77.1 79.1 80 82.5 78.4 81.5

chair 14.9 14.9 21.2 20.9 21 20.8
cow 71.9 74.8 73.7 75.6 72.9 75.6

diningtable 4.7 4.01 13.5 12.2 14.8 12.9
dog 76.9 79.0 75.1 77.8 75.8 79.3

horse 71.8 73.8 73.7 76.2 71.4 74.5
motorbike 68.2 67.8 75.5 77 75.2 76.9

person 68.1 69.3 69.8 71.5 70.2 71.8
pottedplant 32.2 32.7 39.1 38.9 39.9 39.3

sheep 73.4 75.9 78.6 82.2 77.8 81.7
sofa 13.4 13.1 25.3 25.1 25 24.3
train 56.9 55.7 63.6 63.8 63.9 63.9

tvmonitor 46.9 46.7 47.2 48.7 48.1 49.8
Average 56.6 57.3 60.2 61.6 60.3 61.9
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Figure 4: Qualitative comparison of using adaptive training. Images are taken from PASCAL
VOC12 val set and are post-processed with the CRF.

S1 S2 S3 S1 S2 S3
Ground Truth Adapt(7) Adapt (3)

Figure 5: Qualitative comparison of using adaptive training. Images are taken from PASCAL
VOC12 val set and are not post-processed with the CRF.

S1 S2 S3 S1 S2 S3
Ground Truth Adapt(7) Adapt (3)
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