6,748 research outputs found

    Discourse Structure in Machine Translation Evaluation

    Full text link
    In this article, we explore the potential of using sentence-level discourse structure for machine translation evaluation. We first design discourse-aware similarity measures, which use all-subtree kernels to compare discourse parse trees in accordance with the Rhetorical Structure Theory (RST). Then, we show that a simple linear combination with these measures can help improve various existing machine translation evaluation metrics regarding correlation with human judgments both at the segment- and at the system-level. This suggests that discourse information is complementary to the information used by many of the existing evaluation metrics, and thus it could be taken into account when developing richer evaluation metrics, such as the WMT-14 winning combined metric DiscoTKparty. We also provide a detailed analysis of the relevance of various discourse elements and relations from the RST parse trees for machine translation evaluation. In particular we show that: (i) all aspects of the RST tree are relevant, (ii) nuclearity is more useful than relation type, and (iii) the similarity of the translation RST tree to the reference tree is positively correlated with translation quality.Comment: machine translation, machine translation evaluation, discourse analysis. Computational Linguistics, 201

    Cross-Language Question Re-Ranking

    Full text link
    We study how to find relevant questions in community forums when the language of the new questions is different from that of the existing questions in the forum. In particular, we explore the Arabic-English language pair. We compare a kernel-based system with a feed-forward neural network in a scenario where a large parallel corpus is available for training a machine translation system, bilingual dictionaries, and cross-language word embeddings. We observe that both approaches degrade the performance of the system when working on the translated text, especially the kernel-based system, which depends heavily on a syntactic kernel. We address this issue using a cross-language tree kernel, which compares the original Arabic tree to the English trees of the related questions. We show that this kernel almost closes the performance gap with respect to the monolingual system. On the neural network side, we use the parallel corpus to train cross-language embeddings, which we then use to represent the Arabic input and the English related questions in the same space. The results also improve to close to those of the monolingual neural network. Overall, the kernel system shows a better performance compared to the neural network in all cases.Comment: SIGIR-2017; Community Question Answering; Cross-language Approaches; Question Retrieval; Kernel-based Methods; Neural Networks; Distributed Representation

    Correlating neural and symbolic representations of language

    Full text link
    Analysis methods which enable us to better understand the representations and functioning of neural models of language are increasingly needed as deep learning becomes the dominant approach in NLP. Here we present two methods based on Representational Similarity Analysis (RSA) and Tree Kernels (TK) which allow us to directly quantify how strongly the information encoded in neural activation patterns corresponds to information represented by symbolic structures such as syntax trees. We first validate our methods on the case of a simple synthetic language for arithmetic expressions with clearly defined syntax and semantics, and show that they exhibit the expected pattern of results. We then apply our methods to correlate neural representations of English sentences with their constituency parse trees.Comment: ACL 201

    Distributed Tree Kernels

    Get PDF
    In this paper, we propose the distributed tree kernels (DTK) as a novel method to reduce time and space complexity of tree kernels. Using a linear complexity algorithm to compute vectors for trees, we embed feature spaces of tree fragments in low-dimensional spaces where the kernel computation is directly done with dot product. We show that DTKs are faster, correlate with tree kernels, and obtain a statistically similar performance in two natural language processing tasks.Comment: ICML201

    Identifying high-impact sub-structures for convolution kernels in document-level sentiment classification

    Get PDF
    Convolution kernels support the modeling of complex syntactic information in machine-learning tasks. However, such models are highly sensitive to the type and size of syntactic structure used. It is therefore an important challenge to automatically identify high impact sub-structures relevant to a given task. In this paper we present a systematic study investigating (combinations of) sequence and convolution kernels using different types of substructures in document-level sentiment classification. We show that minimal sub-structures extracted from constituency and dependency trees guided by a polarity lexicon show 1.45 point absolute improvement in accuracy over a bag-of-words classifier on a widely used sentiment corpus
    corecore