12,063 research outputs found

    Self-supervised Depth Estimation to Regularise Semantic Segmentation in Knee Arthroscopy

    Full text link
    Intra-operative automatic semantic segmentation of knee joint structures can assist surgeons during knee arthroscopy in terms of situational awareness. However, due to poor imaging conditions (e.g., low texture, overexposure, etc.), automatic semantic segmentation is a challenging scenario, which justifies the scarce literature on this topic. In this paper, we propose a novel self-supervised monocular depth estimation to regularise the training of the semantic segmentation in knee arthroscopy. To further regularise the depth estimation, we propose the use of clean training images captured by the stereo arthroscope of routine objects (presenting none of the poor imaging conditions and with rich texture information) to pre-train the model. We fine-tune such model to produce both the semantic segmentation and self-supervised monocular depth using stereo arthroscopic images taken from inside the knee. Using a data set containing 3868 arthroscopic images captured during cadaveric knee arthroscopy with semantic segmentation annotations, 2000 stereo image pairs of cadaveric knee arthroscopy, and 2150 stereo image pairs of routine objects, we show that our semantic segmentation regularised by self-supervised depth estimation produces a more accurate segmentation than a state-of-the-art semantic segmentation approach modeled exclusively with semantic segmentation annotation.Comment: 10 pages, 6 figure

    4DContrast: Contrastive Learning with Dynamic Correspondences for 3D Scene Understanding

    Full text link
    We present a new approach to instill 4D dynamic object priors into learned 3D representations by unsupervised pre-training. We observe that dynamic movement of an object through an environment provides important cues about its objectness, and thus propose to imbue learned 3D representations with such dynamic understanding, that can then be effectively transferred to improved performance in downstream 3D semantic scene understanding tasks. We propose a new data augmentation scheme leveraging synthetic 3D shapes moving in static 3D environments, and employ contrastive learning under 3D-4D constraints that encode 4D invariances into the learned 3D representations. Experiments demonstrate that our unsupervised representation learning results in improvement in downstream 3D semantic segmentation, object detection, and instance segmentation tasks, and moreover, notably improves performance in data-scarce scenarios.Comment: Accepted by ECCV 2022, Video: https://youtu.be/qhGhWZmJq3

    Learning Features by Watching Objects Move

    Full text link
    This paper presents a novel yet intuitive approach to unsupervised feature learning. Inspired by the human visual system, we explore whether low-level motion-based grouping cues can be used to learn an effective visual representation. Specifically, we use unsupervised motion-based segmentation on videos to obtain segments, which we use as 'pseudo ground truth' to train a convolutional network to segment objects from a single frame. Given the extensive evidence that motion plays a key role in the development of the human visual system, we hope that this straightforward approach to unsupervised learning will be more effective than cleverly designed 'pretext' tasks studied in the literature. Indeed, our extensive experiments show that this is the case. When used for transfer learning on object detection, our representation significantly outperforms previous unsupervised approaches across multiple settings, especially when training data for the target task is scarce.Comment: CVPR 201

    A Trie-Structured Bayesian Model for Unsupervised Morphological Segmentation

    Full text link
    In this paper, we introduce a trie-structured Bayesian model for unsupervised morphological segmentation. We adopt prior information from different sources in the model. We use neural word embeddings to discover words that are morphologically derived from each other and thereby that are semantically similar. We use letter successor variety counts obtained from tries that are built by neural word embeddings. Our results show that using different information sources such as neural word embeddings and letter successor variety as prior information improves morphological segmentation in a Bayesian model. Our model outperforms other unsupervised morphological segmentation models on Turkish and gives promising results on English and German for scarce resources.Comment: 12 pages, accepted and presented at the CICLING 2017 - 18th International Conference on Intelligent Text Processing and Computational Linguistic

    PanDA: Panoptic Data Augmentation

    Get PDF
    The recently proposed panoptic segmentation task presents a significant challenge of image understanding with computer vision by unifying semantic segmentation and instance segmentation tasks. In this paper we present an efficient and novel panoptic data augmentation (PanDA) method which operates exclusively in pixel space, requires no additional data or training, and is computationally cheap to implement. By retraining original state-of-the-art models on PanDA augmented datasets generated with a single frozen set of parameters, we show robust performance gains in panoptic segmentation, instance segmentation, as well as detection across models, backbones, dataset domains, and scales. Finally, the effectiveness of unrealistic-looking training images synthesized by PanDA suggest that one should rethink the need for image realism for efficient data augmentation
    corecore