21,758 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era

    Full text link
    OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated ([email protected]

    Testing the nomological network for the Personal Engagement Model

    Full text link
    The study of employee engagement has been a key focus of management for over three decades. The academic literature on engagement has generated multiple definitions but there are two primary models of engagement: the Personal Engagement Model of Kahn (1990), and the Work Engagement Model (WEM) of Schaufeli et al., (2002). While the former is cited by most authors as the seminal work on engagement, research has tended to focus on elements of the model and most theoretical work on engagement has predominantly used the WEM to consider the topic. The purpose of this study was to test all the elements of the nomological network of the PEM to determine whether the complete model of personal engagement is viable. This was done using data from a large, complex public sector workforce. Survey questions were designed to test each element of the PEM and administered to a sample of the workforce (n = 3,103). The scales were tested and refined using confirmatory factor analysis and then the model was tested determine the structure of the nomological network. This was validated and the generalisability of the final model was tested across different work and organisational types. The results showed that the PEM is viable but there were differences from what was originally proposed by Kahn (1990). Specifically, of the three psychological conditions deemed necessary for engagement to occur, meaningfulness, safety, and availability, only meaningfulness was found to contribute to employee engagement. The model demonstrated that employees experience meaningfulness through both the nature of the work that they do and the organisation within which they do their work. Finally, the findings were replicated across employees in different work types and different organisational types. This thesis makes five contributions to the engagement paradigm. It advances engagement theory by testing the PEM and showing that it is an adequate representation of engagement. A model for testing the causal mechanism for engagement has been articulated, demonstrating that meaningfulness in work is a primary mechanism for engagement. The research has shown the key aspects of the workplace in which employees experience meaningfulness, the nature of the work that they do and the organisation within which they do it. It has demonstrated that this is consistent across organisations and the type of work. Finally, it has developed a reliable measure of the different elements of the PEM which will support future research in this area

    BotMoE: Twitter Bot Detection with Community-Aware Mixtures of Modal-Specific Experts

    Full text link
    Twitter bot detection has become a crucial task in efforts to combat online misinformation, mitigate election interference, and curb malicious propaganda. However, advanced Twitter bots often attempt to mimic the characteristics of genuine users through feature manipulation and disguise themselves to fit in diverse user communities, posing challenges for existing Twitter bot detection models. To this end, we propose BotMoE, a Twitter bot detection framework that jointly utilizes multiple user information modalities (metadata, textual content, network structure) to improve the detection of deceptive bots. Furthermore, BotMoE incorporates a community-aware Mixture-of-Experts (MoE) layer to improve domain generalization and adapt to different Twitter communities. Specifically, BotMoE constructs modal-specific encoders for metadata features, textual content, and graphical structure, which jointly model Twitter users from three modal-specific perspectives. We then employ a community-aware MoE layer to automatically assign users to different communities and leverage the corresponding expert networks. Finally, user representations from metadata, text, and graph perspectives are fused with an expert fusion layer, combining all three modalities while measuring the consistency of user information. Extensive experiments demonstrate that BotMoE significantly advances the state-of-the-art on three Twitter bot detection benchmarks. Studies also confirm that BotMoE captures advanced and evasive bots, alleviates the reliance on training data, and better generalizes to new and previously unseen user communities.Comment: Accepted at SIGIR 202

    Technical Dimensions of Programming Systems

    Get PDF
    Programming requires much more than just writing code in a programming language. It is usually done in the context of a stateful environment, by interacting with a system through a graphical user interface. Yet, this wide space of possibilities lacks a common structure for navigation. Work on programming systems fails to form a coherent body of research, making it hard to improve on past work and advance the state of the art. In computer science, much has been said and done to allow comparison of programming languages, yet no similar theory exists for programming systems; we believe that programming systems deserve a theory too. We present a framework of technical dimensions which capture the underlying characteristics of programming systems and provide a means for conceptualizing and comparing them. We identify technical dimensions by examining past influential programming systems and reviewing their design principles, technical capabilities, and styles of user interaction. Technical dimensions capture characteristics that may be studied, compared and advanced independently. This makes it possible to talk about programming systems in a way that can be shared and constructively debated rather than relying solely on personal impressions. Our framework is derived using a qualitative analysis of past programming systems. We outline two concrete ways of using our framework. First, we show how it can analyze a recently developed novel programming system. Then, we use it to identify an interesting unexplored point in the design space of programming systems. Much research effort focuses on building programming systems that are easier to use, accessible to non-experts, moldable and/or powerful, but such efforts are disconnected. They are informal, guided by the personal vision of their authors and thus are only evaluable and comparable on the basis of individual experience using them. By providing foundations for more systematic research, we can help programming systems researchers to stand, at last, on the shoulders of giants

    Implementing Health Impact Assessment as a Required Component of Government Policymaking: A Multi-Level Exploration of the Determinants of Healthy Public Policy

    Get PDF
    It is widely understood that the public policies of ‘non-health’ government sectors have greater impacts on population health than those of the traditional healthcare realm. Health Impact Assessment (HIA) is a decision support tool that identifies and promotes the health benefits of policies while also mitigating their unintended negative consequences. Despite numerous calls to do so, the Ontario government has yet to implement HIA as a required component of policy development. This dissertation therefore sought to identify the contexts and factors that may both enable and impede HIA use at the sub-national (i.e., provincial, territorial, or state) government level. The three integrated articles of this dissertation provide insights into specific aspects of the policy process as they relate to HIA. Chapter one details a case study of purposive information-seeking among public servants within Ontario’s Ministry of Education (MOE). Situated within Ontario’s Ministry of Health (MOH), chapter two presents a case study of policy collaboration between health and ‘non-health’ ministries. Finally, chapter three details a framework analysis of the political factors supporting health impact tool use in two sub-national jurisdictions – namely, Québec and South Australia. MOE respondents (N=9) identified four components of policymaking ‘due diligence’, including evidence retrieval, consultation and collaboration, referencing, and risk analysis. As prospective HIA users, they also confirmed that information is not routinely sought to mitigate the potential negative health impacts of education-based policies. MOH respondents (N=8) identified the bureaucratic hierarchy as the brokering mechanism for inter-ministerial policy development. As prospective HIA stewards, they also confirmed that the ministry does not proactively flag the potential negative health impacts of non-health sector policies. Finally, ‘lessons learned’ from case articles specific to Québec (n=12) and South Australia (n=17) identified the political factors supporting tool use at different stages of the policy cycle, including agenda setting (‘policy elites’ and ‘political culture’), implementation (‘jurisdiction’), and sustained implementation (‘institutional power’). This work provides important insights into ‘real life’ policymaking. By highlighting existing facilitators of and barriers to HIA use, the findings offer a useful starting point from which proponents may tailor context-specific strategies to sustainably implement HIA at the sub-national government level

    Visualisation of Fundamental Movement Skills (FMS): An Iterative Process Using an Overarm Throw

    Get PDF
    Fundamental Movement Skills (FMS) are precursor gross motor skills to more complex or specialised skills and are recognised as important indicators of physical competence, a key component of physical literacy. FMS are predominantly assessed using pre-defined manual methodologies, most commonly the various iterations of the Test of Gross Motor Development. However, such assessments are time-consuming and often require a minimum basic level of training to conduct. Therefore, the overall aim of this thesis was to utilise accelerometry to develop a visualisation concept as part of a feasibility study to support the learning and assessment of FMS, by reducing subjectivity and the overall time taken to conduct a gross motor skill assessment. The overarm throw, an important fundamental movement skill, was specifically selected for the visualisation development as it is an acyclic movement with a distinct initiation and conclusion. Thirteen children (14.8 ± 0.3 years; 9 boys) wore an ActiGraph GT9X Link Inertial Measurement Unit device on the dominant wrist whilst performing a series of overarm throws. This thesis illustrates how the visualisation concept was developed using raw accelerometer data, which was processed and manipulated using MATLAB 2019b software to obtain and depict key throw performance data, including the trajectory and velocity of the wrist during the throw. Overall, this thesis found that the developed visualisation concept can provide strong indicators of throw competency based on the shape of the throw trajectory. Future research should seek to utilise a larger, more diverse, population, and incorporate machine learning. Finally, further work is required to translate this concept to other gross motor skills

    MUFFLE: Multi-Modal Fake News Influence Estimator on Twitter

    Get PDF
    To alleviate the impact of fake news on our society, predicting the popularity of fake news posts on social media is a crucial problem worthy of study. However, most related studies on fake news emphasize detection only. In this paper, we focus on the issue of fake news influence prediction, i.e., inferring how popular a fake news post might become on social platforms. To achieve our goal, we propose a comprehensive framework, MUFFLE, which captures multi-modal dynamics by encoding the representation of news-related social networks, user characteristics, and content in text. The attention mechanism developed in the model can provide explainability for social or psychological analysis. To examine the effectiveness of MUFFLE, we conducted extensive experiments on real-world datasets. The experimental results show that our proposed method outperforms both state-of-the-art methods of popularity prediction and machine-based baselines in top-k NDCG and hit rate. Through the experiments, we also analyze the feature importance for predicting fake news influence via the explainability provided by MUFFLE
    • …
    corecore