41 research outputs found

    Self-taught Object Localization with Deep Networks

    Full text link
    This paper introduces self-taught object localization, a novel approach that leverages deep convolutional networks trained for whole-image recognition to localize objects in images without additional human supervision, i.e., without using any ground-truth bounding boxes for training. The key idea is to analyze the change in the recognition scores when artificially masking out different regions of the image. The masking out of a region that includes the object typically causes a significant drop in recognition score. This idea is embedded into an agglomerative clustering technique that generates self-taught localization hypotheses. Our object localization scheme outperforms existing proposal methods in both precision and recall for small number of subwindow proposals (e.g., on ILSVRC-2012 it produces a relative gain of 23.4% over the state-of-the-art for top-1 hypothesis). Furthermore, our experiments show that the annotations automatically-generated by our method can be used to train object detectors yielding recognition results remarkably close to those obtained by training on manually-annotated bounding boxes.Comment: WACV 201

    Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images

    Full text link
    Convolutional neural networks (CNNs) show impressive performance for image classification and detection, extending heavily to the medical image domain. Nevertheless, medical experts are sceptical in these predictions as the nonlinear multilayer structure resulting in a classification outcome is not directly graspable. Recently, approaches have been shown which help the user to understand the discriminative regions within an image which are decisive for the CNN to conclude to a certain class. Although these approaches could help to build trust in the CNNs predictions, they are only slightly shown to work with medical image data which often poses a challenge as the decision for a class relies on different lesion areas scattered around the entire image. Using the DiaretDB1 dataset, we show that on retina images different lesion areas fundamental for diabetic retinopathy are detected on an image level with high accuracy, comparable or exceeding supervised methods. On lesion level, we achieve few false positives with high sensitivity, though, the network is solely trained on image-level labels which do not include information about existing lesions. Classifying between diseased and healthy images, we achieve an AUC of 0.954 on the DiaretDB1.Comment: Accepted in Proc. IEEE International Conference on Image Processing (ICIP), 201

    Weakly Supervised Semantic Segmentation of Satellite Images

    Get PDF
    International audienceWhen one wants to train a neural network to perform semantic segmentation, creating pixel-level annotations for each of the images in the database is a tedious task. If he works with aerial or satellite images, which are usually very large, it is even worse. With that in mind, we investigate how to use image-level annotations in order to perform semantic segmentation. Image-level annotations are much less expensive to acquire than pixel-level annotations, but we lose a lot of information for the training of the model. From the annotations of the images, the model must find by itself how to classify the different regions of the image. In this work, we use the method proposed by Anh and Kwak [1] to produce pixel-level annotation from image level annotation. We compare the overall quality of our generated dataset with the original dataset. In addition, we propose an adaptation of the AffinityNet that allows us to directly perform a semantic segmentation. Our results show that the generated labels lead to the same performances for the training of several segmentation networks. Also, the quality of semantic segmentation performed directly by the AffinityNet and the Random Walk is close to the one of the best fully-supervised approaches
    corecore