23 research outputs found

    Self-supervised learning of a facial attribute embedding from video

    Full text link
    We propose a self-supervised framework for learning facial attributes by simply watching videos of a human face speaking, laughing, and moving over time. To perform this task, we introduce a network, Facial Attributes-Net (FAb-Net), that is trained to embed multiple frames from the same video face-track into a common low-dimensional space. With this approach, we make three contributions: first, we show that the network can leverage information from multiple source frames by predicting confidence/attention masks for each frame; second, we demonstrate that using a curriculum learning regime improves the learned embedding; finally, we demonstrate that the network learns a meaningful face embedding that encodes information about head pose, facial landmarks and facial expression, i.e. facial attributes, without having been supervised with any labelled data. We are comparable or superior to state-of-the-art self-supervised methods on these tasks and approach the performance of supervised methods.Comment: To appear in BMVC 2018. Supplementary material can be found at http://www.robots.ox.ac.uk/~vgg/research/unsup_learn_watch_faces/fabnet.htm

    Cross-Task Representation Learning for Anatomical Landmark Detection

    Get PDF
    Recently, there is an increasing demand for automatically detecting anatomical landmarks which provide rich structural information to facilitate subsequent medical image analysis. Current methods related to this task often leverage the power of deep neural networks, while a major challenge in fine tuning such models in medical applications arises from insufficient number of labeled samples. To address this, we propose to regularize the knowledge transfer across source and target tasks through cross-task representation learning. The proposed method is demonstrated for extracting facial anatomical landmarks which facilitate the diagnosis of fetal alcohol syndrome. The source and target tasks in this work are face recognition and landmark detection, respectively. The main idea of the proposed method is to retain the feature representations of the source model on the target task data, and to leverage them as an additional source of supervisory signals for regularizing the target model learning, thereby improving its performance under limited training samples. Concretely, we present two approaches for the proposed representation learning by constraining either final or intermediate model features on the target model. Experimental results on a clinical face image dataset demonstrate that the proposed approach works well with few labeled data, and outperforms other compared approaches.Comment: MICCAI-MLMI 202

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201

    BRUL\`E: Barycenter-Regularized Unsupervised Landmark Extraction

    Full text link
    Unsupervised retrieval of image features is vital for many computer vision tasks where the annotation is missing or scarce. In this work, we propose a new unsupervised approach to detect the landmarks in images, validating it on the popular task of human face key-points extraction. The method is based on the idea of auto-encoding the wanted landmarks in the latent space while discarding the non-essential information (and effectively preserving the interpretability). The interpretable latent space representation (the bottleneck containing nothing but the wanted key-points) is achieved by a new two-step regularization approach. The first regularization step evaluates transport distance from a given set of landmarks to some average value (the barycenter by Wasserstein distance). The second regularization step controls deviations from the barycenter by applying random geometric deformations synchronously to the initial image and to the encoded landmarks. We demonstrate the effectiveness of the approach both in unsupervised and semi-supervised training scenarios using 300-W, CelebA, and MAFL datasets. The proposed regularization paradigm is shown to prevent overfitting, and the detection quality is shown to improve beyond the state-of-the-art face models.Comment: 10 main pages with 6 figures and 1 Table, 14 pages total with 6 supplementary figures. I.B. and N.B. contributed equally. D.V.D. is corresponding autho
    corecore