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Abstract. Recently, there is an increasing demand for automatically
detecting anatomical landmarks which provide rich structural informa-
tion to facilitate subsequent medical image analysis. Current methods
related to this task often leverage the power of deep neural networks,
while a major challenge in fine tuning such models in medical applica-
tions arises from insufficient number of labeled samples. To address this,
we propose to regularize the knowledge transfer across source and target
tasks through cross-task representation learning. The proposed method
is demonstrated for extracting facial anatomical landmarks which facili-
tate the diagnosis of fetal alcohol syndrome. The source and target tasks
in this work are face recognition and landmark detection, respectively.
The main idea of the proposed method is to retain the feature repre-
sentations of the source model on the target task data, and to leverage
them as an additional source of supervisory signals for regularizing the
target model learning, thereby improving its performance under limited
training samples. Concretely, we present two approaches for the proposed
representation learning by constraining either final or intermediate model
features on the target model. Experimental results on a clinical face im-
age dataset demonstrate that the proposed approach works well with few
labeled data, and outperforms other compared approaches.

Keywords: Anatomical landmark detection · Knowledge transfer

1 Introduction

Accurate localization of anatomical landmarks plays an important role for med-
ical image analysis and applications such as image registration and shape anal-
ysis [3]. It also has the potential to facilitate the early diagnosis of Fetal Al-
cohol Syndrome (FAS) [11]. An FAS diagnosis requires the identification of at
least 2 of 3 cardinal facial features; a thin upper lip, a smooth philtrum and
a reduced palpebral fissure length (PFL) [10], which means that even a small
inaccuracy in the PFL measurement can easily result in misdiagnosis. Conven-
tional approaches for extracting anatomical landmarks mostly rely on manual
examination, which is tedious and subject to inter-operator variability. To au-
tomate landmark detection, recent methods in computer vision [16, 22, 25] and
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medical image analysis [3,11,26] have extensively relied on convolutional neural
networks (CNN) for keypoint regression. Although these models have achieved
promising performance, this task still remains challenging especially when han-
dling the labeled data scarcity in medical domain, due to expensive and inefficient
annotation process. Transfer learning, in particular fine-tuning pre-trained mod-
els from similar domains have been widely used to help reduce over-fitting by
providing a better initialization [17]. However, merely fine-tuning the existing
parameters may arguably lead to a suboptimal local minimum for the target
task, because much knowledge of the pre-trained model in the feature space is
barely explored [13,14]. To address this, we explore the following question: Is it
possible to leverage the abundant knowledge from a domain-similar source task to
guide or regularize the training of the target task with limited training samples?

We investigate this hypothesis via cross-task representation learning, where
“cross-task” here means that the learning process is made between the source and
target tasks with different objectives. In this work, the proposed cross-task rep-
resentation learning approach is illustrated for localizing anatomical landmarks
in clinical face images to facilitate early recognition of fetal alcohol syndrome [1],
where the source and target tasks are face recognition and landmark detection.
Intuitively, the proposed representation learning is interpreted as preserving fea-
ture representations of a source classification model on the target task data,
which serves as a regularization constraint for learning the landmark detector.
Two approaches for the proposed representation learning are developed by con-
straining either final or intermediate network features on the target model.

Related Work. Current state-of-art methods formulate the landmark detec-
tion as a CNN based regression problem, including two main frameworks: direct
coordinate regression [6,24] and heatmap regression [16,22]. Heatmap regression
usually outperforms its counterpart as it preserves high spatial resolution during
regression. In medical imaging, several CNN architectures have been developed
based on attention mechanisms [3, 26], and cascaded processing [23] for the en-
hancement of anatomical landmark detection. However, the proposed learning
approach in this paper focuses on internally enriching the feature representations
for the keypoint localization without complicating the network design.

Among existing knowledge transfer approaches, fine-tuning [22], as a stan-
dard practice initializes from a pre-trained model and shifts its original capabil-
ity towards a target task, where a small learning rate is often applied and some
model parameters may need to be frozen to avoid overfitting. However, empiri-
cally modifying the existing parameters may not generalize well over the small
training dataset. Knowledge distillation originally proposed for model compres-
sion [9] is also related to knowledge transfer. This technique has been success-
fully extended and applied to various applications, including hint learning [20],
incremental learning [5, 15], privileged learning [4], domain adaptation [7] and
human expert knowledge distillation [19]. These distillation methods focused on
training a compact model by operating the knowledge transfer across the same
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tasks [9,19,20]. However, our proposed learning approach aims to regularize the
transfer learning across different tasks.

Contributions. We propose a new deep learning framework for anatomical
landmark detection under limited training samples. The main contributions are:
(1) we propose a cross-task representation learning approach whereby the feature
representations of a pre-trained classification model are leveraged for regularizing
the optimization of landmark detection. (2) We present two approaches for the
proposed representation learning by constraining either final or intermediate
network features on the target task data. In addition, a cosine similarity inspired
by metric learning is adopted as a regularization loss to transfer the relational
knowledge between tasks. (3) We experimentally show that the proposed learning
approach performs well in anatomical landmark detection with limited training
samples and is superior to standard transfer learning approaches.

2 Method

In this section, we first present the problem formulation of anatomical landmark
detection, and then describe the design of the proposed cross-task representation
learning to address this task.

2.1 Problem Formulation

In this paper, our target task is anatomical landmark detection, which aims
to localize a set of pre-defined anatomical landmarks given a facial image. Let
Dt = {Iti,pti}

Nt
i=1 be the training dataset with Nt pairs of training samples in

the target domain. Iti ∈ RH×W×3 represents a 2D RGB image with height H
and width W , pti = [(x1, y1), (x2, y2), ..., (xK , yK)] ∈ R2×K denotes the corre-
sponding labeled landmark coordinates, and K is the number of anatomical
landmarks (K = 14). We formulate this task using heatmap regression, inspired
by its recent success in keypoint localization [16, 22]. Following prior work [16],
we downscale the labeled coordinates to 1/4 of the input size (pti = pti/4), and
then transform them to a set of heatmaps Gt

i ∈ R(H/4)×(W/4)×K . Each heatmap
gtk ∈ R(H/4)×(W/4), k ∈ {1, ...,K} is defined as a 2D Gaussian kernel centered
on the k-th landmark coordinate (xk, yk). The (a, b) entry of gtk is computed as

gtk(a, b) = exp(− (a−xk)
2+(b−yk)2
2σ2 ), where σ denotes the kernel width (σ = 1.5

pixels). Consequently, the goal is to learn a network which regresses each input
image to a set of heatmaps, based on the updated dataset Dt = {Iti,Gt

i}
Nt
i=1.

For this regression problem, most state-the-of-the-art methods [22,25] follow
the encoder-decoder design, in which a pre-trained network (e.g. ResNet50 [8]) is
usually utilized in the encoder for feature extraction, and then the entire network
or only the decoder is fine-tuned during training. However, due to the limited
number of training samples in our case, merely relying on standard fine-tuning
may not always provide a good localization accuracy. Therefore, we present the
proposed solution to address this problem in the next section.
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Fig. 1. Illustration of proposed approaches for learning the anatomical landmark detec-
tion models, where (a) presents the regularization constraint on the final layer output
(LCD), and (b) is to constrain the predictions on the encoder output (LED).

2.2 Cross-Task Representation Learning

Overview. Fig. 1 depicts the overall design of the proposed cross-task rep-
resentation learning approach. Firstly, the source model pre-trained on a face
classification task is operated in the inference mode to predict rich feature rep-
resentations from either classification or intermediate layers for the target task
data. The target model is then initialized from the source model and extended
with a task-specific decoder for the task of landmark detection (LR). Obtained
feature representations are then transferred by regularization losses (LCD or
LED) for regularizing the target model learning.

Source Model. We consider a pre-trained face classification network as our
source model, since generic facial representations generated from this domain-
similar task have been demonstrated to be helpful for other facial analysis [21].
Formally, let Sθ1,θ2 : RH×W×3 → RC be the source network for a face classifi-
cation task with C classes, where θ1 and θ2 are the learnable parameters. The
network consists of a feature extractor (encoder) fsθ1 : RH×W×3 → Rd and a clas-

sifier gsθ2 : Rd → RC , where d denotes the dimensionality of the encoder output.
A cross-entropy loss is typically used to train the network Sθ1,θ2 := gsθ2(fsθ1(I))
which maps a facial image to classification scores based on a rich labeled dataset
Ds. In practice, we adopt a pre-trained ResNet-50 [8] model from VGGFace2 [2]
for the source network. Other available deep network architectures could also be
utilized for this purpose.

Target Model. For the task of heatmap regression, the target network Tθ1,θ2 is
firstly initialized from the pre-trained source network. We then follow the design
of [22], employing three deconvolutional layers after the encoder output f tθ1(I) to
recover the desired spatial resolution, where each layer has the dimension of 256
and 4×4 kernel with the stride of 2. Finally, a 1×1 convolutional layer is added
to complete this task-specific decoder htθ3(f tθ1(I)) : Rd → R(H/4)×(W/4)×K . The
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Fig. 2. Illustration of proposed framework for testing landmark detection models.

primary learning objective is to minimize the following loss between the decoder
outputs and the labeled heatmaps,

LR =
1

Nt

Nt∑
i=1

∥∥Gt
i − htθ3(f tθ1(Iti))

∥∥2
F

(1)

where F denotes the Frobenius norm.

Regularized Knowledge Transfer. Motivated by knowledge distillation, we
aim to regularize the network training by directly acquiring the source model’s
predictions for the target task data Dt, which are further transferred through a
regularization loss LD. Hence, the total loss is defined as,

L = LR + λLD (2)

where λ is a weighting parameter. If λ = 0, the knowledge transfer becomes
standard fine-tuning, as no regularization is included.

For the design of LD, we firstly consider constraining the distance between
the final layer outputs of the two networks, as shown in Fig. 1 (a). Similar to the
distillation loss in [9], we use a temperature parameter µ with softmax function
to smooth the predictions, but the original cross-entropy function is replaced by
the following term,

LCD =
1

Nt

Nt∑
i=1

∥∥∥∥softmax(gsθ2(fsθ1(Iti))

µ

)
− softmax

(
gtθ2(f tθ1(Iti))

µ

)∥∥∥∥2
2

. (3)

The purpose of this design of LCD is to directly align the facial embeddings
between instances, instead of preserving the original classification ability.

Moreover, we consider matching the features maps produced from both en-
coders as another choice, as shown in Fig. 1 (b). Motivated by the work in [18],
we adopt the cosine similarity for the feature alignment as described below,

LED = 1−
Nt∑
i=1

cos(fsθ1(Iti), f
t
θ1(Iti)). (4)

We conjecture that penalizing higher-order angular differences in this context
would help transfer the relational information across different tasks, and also give
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more flexibility for the target model learning. Besides, both regularization terms
can be combined together to regularize the learning process. Different approaches
of the proposed learning strategy will be evaluated in the experimental section.

During inference, as shown in Fig. 2, only the trained target model is used
to infer the heatmaps, and each of them is further processed via an argmax
function to obtain final landmark locations.

3 Experiments

3.1 Dataset and Implementation Details

We evaluate the proposed approach for extracting facial anatomical landmarks.
Images used for training and test datasets were collected by the Collabora-
tive Initiative on Fetal Alcohol Spectrum Disorders (CIFASD)3, a global multi-
disciplinary consortium focused on furthering the understanding of FASD. It
contains subjects from 4 sites across the USA, aged between 4 and 18 years.
Each subject was imaged using a commercially available static 3D photogram-
metry system from 3dMD4. For this study, we utilize the high-resolution 2D
images captured during 3D acquisition, which are used as UV mapped textures
for the 3D surfaces.

Specifically, we acquired in total 1549 facial images annotated by an expert,
and randomly split them into training/validation set (80%), and test set (20%).
All the images were cropped and resized to 256×256 for the network training and
evaluation. Standard data augmentation was performed with randomly horizon-
tal flip (50%) and scaling (0.8). During training, the Adam optimizer [12] was
used for the optimization with the mini-batch size of 2 for 150 epochs. A poly-
nomial decay learning rate was used with the initial value of 0.001. Parameters
of λ and µ used in (2) and (3) were set to 0.002 and 2, respectively.

3.2 Evaluation Metrics

For the evaluation, we firstly employ the Mean Error (ME), which is a commonly-
used evaluation metric in the task of facial landmark detection. It is defined as,
ME = 1

Ne

∑Ne

i=1
1
K ‖pi − p̂i‖2, where Ne is the number of images in the test

set, and pi and p̂i denote the manual annotations and predictions, respectively.
Note that the original normalization factor measured by inter-ocular distance
(Euclidean distance between outer eye corners) is not included in this evaluation,
due to the unavailable annotations for the other eye, as illustrated in Fig. 3.
In addition, we use the Cumulative Errors Distribution (CED) curve with the
metrics of Area-Under-the-Curve (AUC) and Failure Rate (FR), where a failure
case is considered if the point-to-point Euclidean error is greater than 1.2. Higher
scores of AUC or lower scores of FR demonstrate the larger proportion of the
test set is well predicted.

3 https://cifasd.org/
4 http://www.3dmd.com/
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Fig. 3. Qualitative performance of landmark prediction and heatmap regression on the
test set. Subjects’ eyes are masked for privacy preservation. Better viewed in color.
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Fig. 4. Evaluation of CED curve on the
test set. Better viewed in color.

Method ME ± SD FR AUC

FE [22] 1.822±0.501 94.52% 0.01
FTP [22] 1.161±0.261 40.32% 0.10
FT [22] 0.858±0.238 10.65% 0.29
HG [16] 0.879±0.386 12.58% 0.30

CTD-CD 0.842±0.246 5.81% 0.31
CTD-ED 0.830±0.245 7.74% 0.32

CTD-Com 0.829±0.253 6.45% 0.32

Table 1. Quantitative evaluation on the
test set.

3.3 Results and Discussions

To verify the effectiveness of the proposed cross-task representation learning
(CTD) approach, we compare to a widely-used CNN model: stacked Hourglass
(HG) [16] and three variants of fine-tuning [22] without regularization (λ = 0):
Feature Extraction (FE) with freezing the encoder, Fine Tuning Parts (FTP)
without freezing the final convolutional layer of the encoder, and Fine Tuning
(FT) without freezing any layer. In addition, we present an ablation study to
examine the significance of each approach in our proposed CTD, including the
regularization on the classifier output (CTD-CD), the regularization on the en-
coder output (CTD-ED), and the regularization on both outputs (CTD-Com).

Fig. 3 shows the qualitative comparisons between different models on the test
set. As we can see, the predicted landmarks from the proposed methods gener-
ally achieve the better alignment with the ground truth (the first left column)
than the others, and seem to be more robust to difficult pixels especially when



8 Z. Fu et al.

landmarks are in close proximity (upper lip). One possible reason is that feature
representations generated from the source model encode richer facial semantics,
which make landmark spatial locations more discriminative. Furthermore, the
visualization of predicted heatmaps explains how each compared model responds
to the desired task. We observe that our cross-task representation learning can
effectively suppress spurious responses and improve the feature confidence in
related regions, so that more accurate predictions can be achieved.

On the other hand, Table 1 summarizes the quantitative evaluation by report-
ing the statistics for each model. Fig. 4 depicts the CED curve which provides
an intuitive understanding of the overall performance of the compared models.
These evaluations above demonstrate that the proposed methods consistently
outperform standard fine-tuning solutions. Moreover, CTD-ED performs slightly
better than CTD-CD considering the scores of ME and AUC. This may be ex-
plained by the fact that features from intermediate layers are not only semantic,
and also contain to some extent structural information which is beneficial for lo-
calization [7]. Interestingly, CTD-Com using both regularization losses achieves
similar results in CTD-ED, as a result, CTD-ED may be considered as a better
choice for the regularization of transfer learning.

4 Conclusions

In this paper, we presented a new cross-task representation learning approach
to address the problem of anatomical landmark detection where labeled training
data is limited. The proposed learning approach considered reusing the knowl-
edge from a domain-similar source task as a regularization constraint for learn-
ing the target landmark detector. Moreover, several regularization constraints
for the proposed learning approach were considered. Experimental results sug-
gested that the proposed learning approach works well with limited training
samples and outperforms other compared solutions. The proposed approach can
be potentially applied to other related applications in the clinical domain where
the target task has small training set and the source task data is not accessible.

Acknowledgements. This work was done in conjunction with the Collabora-
tive Initiative on Fetal Alcohol Spectrum Disorders (CIFASD), which is funded
by grants from the National Institute on Alcohol Abuse and Alcoholism (NI-
AAA). This work was supported by NIH grant U01AA014809 and EPSRC grant
EP/M013774/1.

References

1. Astley, S.J.: Palpebral fissure length measurement: accuracy of the FAS facial
photographic analysis software and inaccuracy of the ruler. Journal of Population
Therapeutics and Clinical Pharmacology 22(1), e9–e26 (2015)



Cross-Task Representation Learning for Anatomical Landmark Detection 9

2. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset
for recognising faces across pose and age. In: IEEE International Conference on
Automatic Face Gesture Recognition. pp. 67–74 (2018)

3. Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detec-
tion by attentive feature pyramid fusion and regression-voting. In: Medical Image
Computing and Computer Assisted Intervention (MICCAI). pp. 873–881 (2019)

4. David Lopez-Paz, Lon Bottou, B.S.V.V.: Unifying distillation and privileged in-
formation pp. 1–10 (2016)

5. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memo-
rizing. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2019)

6. Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial
landmark localisation with convolutional neural networks. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2018)

7. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
In: Conference on Neural Information Processing Systems (NeurIPS) Workshops
(2015)

10. Hoyme, H.E., May, P.A., Kalberg, W.O., et al.: A practical clinical approach to
diagnosis of fetal alcohol spectrum disorders: Clarification of the 1996 institute of
medicine criteria. Pediatrics 115(1), 39–47 (2006)

11. Huang, R., Suttie, M., Noble, J.A.: An automated CNN-based 3D anatomical
landmark detection method to facilitate surface-based 3D facial shape analysis. In:
Medical Image Computing and Computer-Assisted Intervention (MICCAI) Work-
shops. pp. 163–171 (2019)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proc. of
International Conference on Learning Representations (ICLR). pp. 1–15 (2015)

13. Li, X., Xiong, H., Wang, H., Rao, Y., Liu, L., Chen, Z., Huan, J.: DELTA: DEep
learning transfer using feature map with attention for convolutional networks. In:
Proc. of International Conference on Learning Representations (ICLR). pp. 1–13
(2019)

14. Li, X., Grandvalet, Y., Davoine, F.: Explicit inductive bias for transfer learning
with convolutional networks. In: International Conference on Machine Learning
(ICML). vol. 80, pp. 2830–2839 (2018)

15. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence 40(12), 2935–2947 (2018)

16. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estima-
tion. In: European Conference on Computer Vision (ECCV). pp. 483–499 (2016)

17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering 22(10), 1345–1359 (2010)

18. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

19. Patra, A., Cai, Y., Chatelain, P., Sharma, H., Drukker, L., Papageorghiou, A.T.,
Noble, J.A.: Efficient ultrasound image analysis models with sonographer gaze
assisted distillation. In: Proc. of Medical Image Computing and Computer-Assisted
Intervention (MICCAI). pp. 394–402 (2019)



10 Z. Fu et al.

20. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fit-
nets: Hints for thin deep nets. In: Proc. of International Conference on Learning
Representations (ICLR). pp. 1–13 (2015)

21. Wiles, O., Koepke, A., Zisserman, A.: Self-supervised learning of a facial attribute
embedding from video. In: British Machine Vision Conference (BMVC) (2018)

22. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: European Conference on Computer Vision (ECCV). pp. 472–487 (2018)

23. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical
imaging data using two-stage task-oriented deep neural networks. IEEE Transac-
tions on Image Processing 26(10), 4753–4764 (2017)

24. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face
alignment with auxiliary attributes. IEEE Transactions on Pattern Analysis and
Machine Intelligence 38(5), 918–930 (2016)

25. Zhao, Y., Liu, Y., Shen, C., Gao, Y., Xiong, S.: MobileFAN: Transferring deep
hidden representation for face alignment. Pattern Recognition 100, 107–114 (2020)

26. Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regres-
sion model for landmark detection in cephalograms. In: Proc. of Medical Image
Computing and Computer-Assisted Intervention (MICCAI). pp. 540–548 (2019)


	Cross-Task Representation Learning for Anatomical Landmark Detection 

