5,149 research outputs found

    Cross Pixel Optical Flow Similarity for Self-Supervised Learning

    Full text link
    We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, competitive results for self-supervision in general, and is overall state of the art in self-supervised pretraining for semantic image segmentation, as demonstrated on standard benchmarks

    Learning Features by Watching Objects Move

    Full text link
    This paper presents a novel yet intuitive approach to unsupervised feature learning. Inspired by the human visual system, we explore whether low-level motion-based grouping cues can be used to learn an effective visual representation. Specifically, we use unsupervised motion-based segmentation on videos to obtain segments, which we use as 'pseudo ground truth' to train a convolutional network to segment objects from a single frame. Given the extensive evidence that motion plays a key role in the development of the human visual system, we hope that this straightforward approach to unsupervised learning will be more effective than cleverly designed 'pretext' tasks studied in the literature. Indeed, our extensive experiments show that this is the case. When used for transfer learning on object detection, our representation significantly outperforms previous unsupervised approaches across multiple settings, especially when training data for the target task is scarce.Comment: CVPR 201

    Unsupervised Segmentation in Real-World Images via Spelke Object Inference

    Full text link
    Self-supervised, category-agnostic segmentation of real-world images is a challenging open problem in computer vision. Here, we show how to learn static grouping priors from motion self-supervision by building on the cognitive science concept of a Spelke Object: a set of physical stuff that moves together. We introduce the Excitatory-Inhibitory Segment Extraction Network (EISEN), which learns to extract pairwise affinity graphs for static scenes from motion-based training signals. EISEN then produces segments from affinities using a novel graph propagation and competition network. During training, objects that undergo correlated motion (such as robot arms and the objects they move) are decoupled by a bootstrapping process: EISEN explains away the motion of objects it has already learned to segment. We show that EISEN achieves a substantial improvement in the state of the art for self-supervised image segmentation on challenging synthetic and real-world robotics datasets.Comment: 25 pages, 10 figure

    Semi-Supervised First-Person Activity Recognition in Body-Worn Video

    Get PDF
    Body-worn cameras are now commonly used for logging daily life, sports, and law enforcement activities, creating a large volume of archived footage. This paper studies the problem of classifying frames of footage according to the activity of the camera-wearer with an emphasis on application to real-world police body-worn video. Real-world datasets pose a different set of challenges from existing egocentric vision datasets: the amount of footage of different activities is unbalanced, the data contains personally identifiable information, and in practice it is difficult to provide substantial training footage for a supervised approach. We address these challenges by extracting features based exclusively on motion information then segmenting the video footage using a semi-supervised classification algorithm. On publicly available datasets, our method achieves results comparable to, if not better than, supervised and/or deep learning methods using a fraction of the training data. It also shows promising results on real-world police body-worn video

    LOCATE: Self-supervised Object Discovery via Flow-guided Graph-cut and Bootstrapped Self-training

    Full text link
    Learning object segmentation in image and video datasets without human supervision is a challenging problem. Humans easily identify moving salient objects in videos using the gestalt principle of common fate, which suggests that what moves together belongs together. Building upon this idea, we propose a self-supervised object discovery approach that leverages motion and appearance information to produce high-quality object segmentation masks. Specifically, we redesign the traditional graph cut on images to include motion information in a linear combination with appearance information to produce edge weights. Remarkably, this step produces object segmentation masks comparable to the current state-of-the-art on multiple benchmarks. To further improve performance, we bootstrap a segmentation network trained on these preliminary masks as pseudo-ground truths to learn from its own outputs via self-training. We demonstrate the effectiveness of our approach, named LOCATE, on multiple standard video object segmentation, image saliency detection, and object segmentation benchmarks, achieving results on par with and, in many cases surpassing state-of-the-art methods. We also demonstrate the transferability of our approach to novel domains through a qualitative study on in-the-wild images. Additionally, we present extensive ablation analysis to support our design choices and highlight the contribution of each component of our proposed method.Comment: Accepted to the British Machine Vision Conference (BMVC) 202
    corecore