14 research outputs found

    CVFC: Attention-Based Cross-View Feature Consistency for Weakly Supervised Semantic Segmentation of Pathology Images

    Full text link
    Histopathology image segmentation is the gold standard for diagnosing cancer, and can indicate cancer prognosis. However, histopathology image segmentation requires high-quality masks, so many studies now use imagelevel labels to achieve pixel-level segmentation to reduce the need for fine-grained annotation. To solve this problem, we propose an attention-based cross-view feature consistency end-to-end pseudo-mask generation framework named CVFC based on the attention mechanism. Specifically, CVFC is a three-branch joint framework composed of two Resnet38 and one Resnet50, and the independent branch multi-scale integrated feature map to generate a class activation map (CAM); in each branch, through down-sampling and The expansion method adjusts the size of the CAM; the middle branch projects the feature matrix to the query and key feature spaces, and generates a feature space perception matrix through the connection layer and inner product to adjust and refine the CAM of each branch; finally, through the feature consistency loss and feature cross loss to optimize the parameters of CVFC in co-training mode. After a large number of experiments, An IoU of 0.7122 and a fwIoU of 0.7018 are obtained on the WSSS4LUAD dataset, which outperforms HistoSegNet, SEAM, C-CAM, WSSS-Tissue, and OEEM, respectively.Comment: Submitted to BIBM202

    WeedFocusNet: A Revolutionary Approach using the Attention-Driven ResNet152V2 Transfer Learning

    Get PDF
    The advancement of modern agriculture is heavily dependent on accurate weed detection, which contributes to efficient resource utilization and increased crop yield. Traditional methods, however, often need more accuracy and efficiency. This paper presents WeedFocusNet, an innovative approach that leverages attention-driven ResNet152V2 transfer learning addresses these challenges. This approach enhances model generalization and focuses on critical features for weed identification, thereby overcoming the limitations of existing methods. The objective is to develop a model that enhances weed detection accuracy and optimizes computational efficiency. WeedFocusNet, a novel deep-learning model, performs weed detection better by employing attention-driven transfer learning based on the ResNet152V2 architecture. The model integrates an attention module, concentrating its predictions on the most significant image features. Evaluated on a dataset of weed and crop images, WeedFocusNet achieved an accuracy of 99.28%, significantly outperforming previous methods and models, such as MobileNetV2, ResNet50, and custom CNN models, in terms of accuracy, time complexity, and memory usage, despite its larger memory footprint. These results emphasize the transformative potential of WeedFocusNet as a powerful approach for automating weed detection in agricultural fields

    Structure-Consistent Weakly Supervised Salient Object Detection with Local Saliency Coherence

    Full text link
    Sparse labels have been attracting much attention in recent years. However, the performance gap between weakly supervised and fully supervised salient object detection methods is huge, and most previous weakly supervised works adopt complex training methods with many bells and whistles. In this work, we propose a one-round end-to-end training approach for weakly supervised salient object detection via scribble annotations without pre/post-processing operations or extra supervision data. Since scribble labels fail to offer detailed salient regions, we propose a local coherence loss to propagate the labels to unlabeled regions based on image features and pixel distance, so as to predict integral salient regions with complete object structures. We design a saliency structure consistency loss as self-consistent mechanism to ensure consistent saliency maps are predicted with different scales of the same image as input, which could be viewed as a regularization technique to enhance the model generalization ability. Additionally, we design an aggregation module (AGGM) to better integrate high-level features, low-level features and global context information for the decoder to aggregate various information. Extensive experiments show that our method achieves a new state-of-the-art performance on six benchmarks (e.g. for the ECSSD dataset: F_\beta = 0.8995, E_\xi = 0.9079 and MAE = 0.0489$), with an average gain of 4.60\% for F-measure, 2.05\% for E-measure and 1.88\% for MAE over the previous best method on this task. Source code is available at http://github.com/siyueyu/SCWSSOD.Comment: Accepted by AAAI202

    ZeroWaste Dataset: Towards Deformable Object Segmentation in Extreme Clutter

    Full text link
    Less than 35% of recyclable waste is being actually recycled in the US, which leads to increased soil and sea pollution and is one of the major concerns of environmental researchers as well as the common public. At the heart of the problem are the inefficiencies of the waste sorting process (separating paper, plastic, metal, glass, etc.) due to the extremely complex and cluttered nature of the waste stream. Automated waste detection has great potential to enable more efficient, reliable, and safe waste sorting practices, but it requires label-efficient detection of deformable objects in extremely cluttered scenes. This challenging computer vision task currently lacks suitable datasets or methods in the available literature. In this paper, we take a step towards computer-aided waste detection and present the first in-the-wild industrial-grade waste detection and segmentation dataset, ZeroWaste. This dataset contains over 1800 fully segmented video frames collected from a real waste sorting plant along with waste material labels for training and evaluation of the segmentation methods, as well as over 6000 unlabeled frames that can be further used for semi-supervised and self-supervised learning techniques, as well as frames of the conveyor belt before and after the sorting process, comprising a novel setup that can be used for weakly-supervised segmentation. Our experimental results demonstrate that state-of-the-art segmentation methods struggle to correctly detect and classify target objects which suggests the challenging nature of our proposed real-world task of fine-grained object detection in cluttered scenes. We believe that ZeroWaste will catalyze research in object detection and semantic segmentation in extreme clutter as well as applications in the recycling domain. Our project page can be found at http://ai.bu.edu/zerowaste/
    corecore