4 research outputs found

    Development of a novel autonomous robot for navigation and inspect in oil wells

    Full text link
    This paper proposes a novel robotic system that is able to move along the outside of the oil pipelines used in Electric Submersible Pumps (ESP) and Progressive Cavity Pumps (PCP) applications. This novel design, called RETOV, proposes a light weight structure robot that can be equipped with sensors to measure environmental variables avoiding damage in pumps and wells. In this paper, the main considerations and methodology of design and implementation are discussed. Finally, the first experimental results that show RETOV moving in vertical pipelines are analyzed

    Positive pressure induced channeled suction cups

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 39-40).Leaking in water pipe is a critical issue in Middle Eastern countries such as Kuwait where water is scarce. In-pipe robots can be dispatched to discover the network and inspect the inner surface of the pipe. This thesis describes the design and characterization of suction pads for in-pipe robots. The suction cups are made of hyperelastic materials that contain air channels inside. Instead of using conventional suction technique that is prone to leaking and loosing adhesion force, the suction cup is actuated by compressed air or liquid, which deforms the geometry of the cup to achieve suction. In order to verify the geometry changes during actuation, a uniaxial tension test was done on the elastic material used to acquire the material properties and the suction cup designs were then simulated using FEA in ABAQUS. Next, prototypes were designed in SolidWorks and fabricated using soft lithography techniques. To measure the suction force, pressure measurements were taken both inside the prototype channels and underneath the suction cup. Results show that a Positive Pressure Actuated Suction-cup (PPAS) of diameter forty millimeters can achieve suction force up to 68 N. As more air is inserted into PPAS, the suction force also increases. The concept has proved to be a feasible solution for pipe inspection robot.by Shannon X. Yang.S.B

    A Robot to Measure Water Parameters in Water Distribution Systems

    Get PDF
    Water distribution systems (WDS) are critical infrastructures that transfer drinking water to consumers. In the U.S., around 42 billion gallons of water are being delivered per day via one million miles of pipes to be used in different sectors. Incidents to pipelines cause leak or let contaminants enter purified water in pipe that is harmful to public health. Hence, periodic condition assessments of pipelines and water inside it are required. However, due to the long and complicated configurations of these networks, access to all parts of the pipelines is a cumbersome task. To this aim, in-pipe robots are promising solution that facilitate access to different locations inside pipelines and perform different in-pipe missions. In this project, we design and fabricate an in-pipe robotic system is that is used for water quality monitoring. The robot is equipped with a wireless sensor module and the sensor module is synchronized with the motion unit of the robot. The wireless sensor module facilitates bi-directional data transmission between the robot and base station aboveground. The integrated robotic system navigates in different configurations of the pipeline with smart motion. To this aim, the mechanical design of the self-powered robot based on three adjustable arm modules and three actuator modules is designed. The components of the robot are characterized based on real operation conditions in pipes. A multi-phase motion control algorithm is developed for the robot to move in straight path and non-straight configurations like bends and T-junctions. A bi-directional wireless sensor module is designed to send data packets through underground environment. Finally, the multi-phase motion controller is synchronized with the wireless sensor module and we propose an operation procedure for the robot. In the operation procedure, some radio transceivers are located at non-straight configurations of pipelines and receive the sensor measurements from the robot and guide the robot in the desired direction. The proposed operation procedure provides smart navigation and data transmission during operation for the robot

    Self-rescue mechanism for screw drive in-pipe robots

    No full text
    corecore