2 research outputs found

    An efficient reconfigurable optimal source detection and beam allocation algorithm for signal subspace factorization

    Get PDF
    Now a days, huge amount of data is communicated through channels in wireless network. It requires an efficient parallel operation for the optimal utilization of frequency, time allocation and coding model for signal subspace factorization in smart antenna. In view of this requirement, an efficient reconfigurable optimal source detection and beam allocation algorithm (RoSDBA) is proposed. The proposed algorithm is able to allocate desired signal to the user space to reduce the noise and also for efficient allocation of subspace to remove disturbance in all directions. The proposed method efficiently utilizes the antenna array elements by accurate identification and allocation of antenna array elements such as individual radiators, radiation beam, signal strength, and disturbance factor. With respect to simulation analysis, the proposed method shows better performance for the resolution, radiation beam allocations, identification bias, distribution factor and time taken for the detection of various array arrangements and source numbers

    FPGA-based architectures for acoustic beamforming with microphone arrays : trends, challenges and research opportunities

    Get PDF
    Over the past decades, many systems composed of arrays of microphones have been developed to satisfy the quality demanded by acoustic applications. Such microphone arrays are sound acquisition systems composed of multiple microphones used to sample the sound field with spatial diversity. The relatively recent adoption of Field-Programmable Gate Arrays (FPGAs) to manage the audio data samples and to perform the signal processing operations such as filtering or beamforming has lead to customizable architectures able to satisfy the most demanding computational, power or performance acoustic applications. The presented work provides an overview of the current FPGA-based architectures and how FPGAs are exploited for different acoustic applications. Current trends on the use of this technology, pending challenges and open research opportunities on the use of FPGAs for acoustic applications using microphone arrays are presented and discussed
    corecore