1,996 research outputs found

    New Approaches in Multi-View Clustering

    Get PDF
    Many real-world datasets can be naturally described by multiple views. Due to this, multi-view learning has drawn much attention from both academia and industry. Compared to single-view learning, multi-view learning has demonstrated plenty of advantages. Clustering has long been serving as a critical technique in data mining and machine learning. Recently, multi-view clustering has achieved great success in various applications. To provide a comprehensive review of the typical multi-view clustering methods and their corresponding recent developments, this chapter summarizes five kinds of popular clustering methods and their multi-view learning versions, which include k-means, spectral clustering, matrix factorization, tensor decomposition, and deep learning. These clustering methods are the most widely employed algorithms for single-view data, and lots of efforts have been devoted to extending them for multi-view clustering. Besides, many other multi-view clustering methods can be unified into the frameworks of these five methods. To promote further research and development of multi-view clustering, some popular and open datasets are summarized in two categories. Furthermore, several open issues that deserve more exploration are pointed out in the end

    Deep Clustering: A Comprehensive Survey

    Full text link
    Cluster analysis plays an indispensable role in machine learning and data mining. Learning a good data representation is crucial for clustering algorithms. Recently, deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks. Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering. To address this issue, in this paper we provide a comprehensive survey for deep clustering in views of data sources. With different data sources and initial conditions, we systematically distinguish the clustering methods in terms of methodology, prior knowledge, and architecture. Concretely, deep clustering methods are introduced according to four categories, i.e., traditional single-view deep clustering, semi-supervised deep clustering, deep multi-view clustering, and deep transfer clustering. Finally, we discuss the open challenges and potential future opportunities in different fields of deep clustering

    Consensus graph and spectral representation for one-step multi-view kernel based clustering

    Get PDF
    Recently, multi-view clustering has received much attention in the fields of machine learning and pattern recognition. Spectral clustering for single and multiple views has been the common solution. Despite its good clustering performance, it has a major limitation: it requires an extra step of clustering. This extra step, which could be the famous k-means clustering, depends heavily on initialization, which may affect the quality of the clustering result. To overcome this problem, a new method called Multiview Clustering via Consensus Graph Learning and Nonnegative Embedding (MVCGE) is presented in this paper. In the proposed approach, the consensus affinity matrix (graph matrix), consensus representation and cluster index matrix (nonnegative embedding) are learned simultaneously in a unified framework. Our proposed method takes as input the different kernel matrices corresponding to the different views. The proposed learning model integrates two interesting constraints: (i) the cluster indices should be as smooth as possible over the consensus graph and (ii) the cluster indices are set to be as close as possible to the graph convolution of the consensus representation. In this approach, no post-processing such as k-means or spectral rotation is required. Our approach is tested with real and synthetic datasets. The experiments performed show that the proposed method performs well compared to many state-of-the-art approaches

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Sharing Experiences to Learn User Characteristics in Dynamic Environments with Sparse Data

    Get PDF
    This paper investigates the problem of estimating the value of probabilistic parameters needed for decision making in environments in which an agent, operating within a multi-agent system, has no a priori information about the structure of the distribution of parameter values. The agent must be able to produce estimations even when it may have made only a small number of direct observations, and thus it must be able to operate with sparse data. The paper describes a mechanism that enables the agent to significantly improve its estimation by augmenting its direct observations with those obtained by other agents with which it is coordinating. To avoid undesirable bias in relatively heterogeneous environments while effectively using relevant data to improve its estimations, the mechanism weighs the contributions of other agents' observations based on a real-time estimation of the level of similarity between each of these agents and itself. The "coordination autonomy" module of a coordination-manager system provided an empirical setting for evaluation. Simulation-based evaluations demonstrated that the proposed mechanism outperforms estimations based exclusively on an agent's own observations as well as estimations based on an unweighted aggregate of all other agents' observations.Engineering and Applied Science
    • …
    corecore