12 research outputs found

    Self-Checking Ripple-Carry Adder with Ambipolar Silicon Nanowire FET

    Get PDF
    For the rapid adoption of new and aggressive technologies such as ambipolar Silicon NanoWire (SiNW), addressing fault-tolerance is necessary. Traditionally, transient fault detection implies large hardware overhead or performance decrease compared to permanent fault detection. In this paper, we focus on on-line testing and its application to ambipolar SiNW. We demonstrate on self - checking ripple - carry adder how ambipolar design style can help reduce the hardware overhead. When compared with equivalent CMOS process, ambipolar SiNW design shows a reduction in area of at least 56% (28%) with a decreased delay of 62% (6%) for Static (Transmission Gate) design style

    Nanowire systems: technology and design (invited paper)

    Get PDF
    Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this work, we consider double independent gate, vertically-stacked nanowire FETs with gate-all-around structures and typical diameter of 20-nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behavior of the nanostructure by selectively enabling one type of carriers. These transistors work as switches with electrically-programmable polarity and thus realize an exclusive or operation. The intrinsic higher expressive power of these FETs, as compared to standard CMOS, enables us to realize more efficient library cells, which we organize as tiles to realize circuits by regular arrays. This article surveys both the technology for double independent gate FETs as well as physical and logic design tools to realize digital systems with this fabrication technology

    Advanced System on a Chip Design Based on Controllable-Polarity FETs (invited paper)

    Get PDF
    Field-Effect Transistors (FETs) with on-line controllable-polarity are promising candidates to support next generation System-on-Chip (SoC). Thanks to their enhanced functionality, controllable-polarity FETs enable a superior design of critical components in a SoC, such as processing units and memories, while also providing native solutions to control power consumption. In this paper, we present the efficient design of a SoC core with controllable-polarity FET. Processing units are speeded-up at the datapath level, as arithmetic operations require fewer physical resources than in standard CMOS. Power consumption is decreased via embedded power-gating techniques and tunable high-performance/low-power devices operation. Memory cells are made smaller by merging the access interface with the storage circuitry. We foresee the advantages deriving from these techniques, by evaluating their impact on the design of SoC for a contemporary telecommunication application. Using a 22-nm vertically-stacked silicon nanowire technology, a coarse-grain evaluation at the block level estimates a delay and power reduction of 20% and 19% respectively, at a cost of a moderate area overhead of 15%, with respect to a state-of-art FinFET technology

    Robustness Analysis of Controllable-Polarity Silicon Nanowire Devices and Circuits

    Get PDF
    Substantial downscaling of the feature size in current CMOS technology has confronted digital designers with serious challenges including short channel effect and high amount of leakage power. To address these problems, emerging nano-devices, e.g., Silicon NanoWire FET (SiNWFET), is being introduced by the research community. These devices keep on pursuing Mooreâs Law by improving channel electrostatic controllability, thereby reducing the Off âstate leakage current. In addition to these improvements, recent developments introduced devices with enhanced capabilities, such as Controllable-Polarity (CP) SiNWFETs, which make them very interesting for compact logic cell and arithmetic circuits. At advanced technology nodes, the amount of physical controls, during the fabrication process of nanometer devices, cannot be precisely determined because of technology fluctuations. Consequently, the structural parameters of fabricated circuits can be significantly different from their nominal values. Moreover, giving an a-priori conclusion on the variability of advanced technologies for emerging nanoscale devices, is a difficult task and novel estimation methodologies are required. This is a necessity to guarantee the performance and the reliability of future integrated circuits. Statistical analysis of process variation requires a great amount of numerical data for nanoscale devices. This introduces a serious challenge for variability analysis of emerging technologies due to the lack of fast simulation models. One the one hand, the development of accurate compact models entails numerous tests and costly measurements on fabricated devices. On the other hand, Technology Computer Aided Design (TCAD) simulations, that can provide precise information about devices behavior, are too slow to timely generate large enough data set. In this research, a fast methodology for generating data set for variability analysis is introduced. This methodology combines the TCAD simulations with a learning algorithm to alleviate the time complexity of data set generation. Another formidable challenge for variability analysis of the large circuits is growing number of process variation sources. Utilizing parameterized models is becoming a necessity for chip design and verification. However, the high dimensionality of parameter space imposes a serious problem. Unfortunately, the available dimensionality reduction techniques cannot be employed for three main reasons of lack of accuracy, distribution dependency of the data points, and finally incompatibility with device and circuit simulators. We propose a novel technique of parameter selection for modeling process and performance variation. The proposed technique efficiently addresses the aforementioned problems. Appropriate testing, to capture manufacturing defects, plays an important role on the quality of integrated circuits. Compared to conventional CMOS, emerging nano-devices such as CP-SiNWFETs have different fabrication process steps. In this case, current fault models must be extended for defect detection. In this research, we extracted the possible fabrication defects, and then proposed a fault model for this technology. We also provided a couple of test methods for detecting the manufacturing defects in various types of CP-SiNWFET logic gates. Finally, we used the obtained fault model to build fault tolerant arithmetic circuits with a bunch of superior properties compared to their competitors

    Vertically-Stacked Silicon Nanowire Transistors with Controllable Polarity: a Robustness Study

    Get PDF
    Vertically-stacked Silicon NanoWire FETs (SiN- WFETs) with gate-all-around control are the natural and most advanced extension of FinFETs. At advanced technology nodes, due to Schottky contacts at channel interfaces, devices show an ambipolar behavior, i.e., the device exhibits n- and p-type charac- teristics simultaneously. This property, when controlled by an independent Double-Gate (DG) structure, can be exploited for logic computation, as it provides intrinsic XOR operation. Elec- trostatic doping of the transistor suppresses the need for dopant implantation at the source and drain regions, which potentially leads to a larger process variations immunity of the devices. In this paper, we propose a novel method based on Technology Computer-Aided Design (TCAD) simulations, enabling the predic- tion of emerging devices variability. This method is used within our DG-SiNWFET framework and shows that devices, whose polarity is controlled electrostatically, present better immunity to variations for some of their parameters, such as the off-current with 16Ă— less standard deviation

    New Logic Synthesis As Nanotechnology Enabler (invited paper)

    Get PDF
    Nanoelectronics comprises a variety of devices whose electrical properties are more complex as compared to CMOS, thus enabling new computational paradigms. The potentially large space for innovation has to be explored in the search for technologies that can support large-scale and high- performance circuit design. Within this space, we analyze a set of emerging technologies characterized by a similar computational abstraction at the design level, i.e., a binary comparator or a majority voter. We demonstrate that new logic synthesis techniques, natively supporting this abstraction, are the technology enablers. We describe models and data-structures for logic design using emerging technologies and we show results of applying new synthesis algorithms and tools. We conclude that new logic synthesis methods are required to both evaluate emerging technologies and to achieve the best results in terms of area, power and performance

    A Circuit Synthesis Flow for Controllable-Polarity Transistors

    Get PDF
    Double-Gate (DG) controllable-polarity Field-Effect Transistors (FETs) are devices whose n- or p- polarity is on-line configurable by adjusting the second gate voltage. Such emerging transistors have been fabricated in silicon nanowires, carbon nanotuges and graphene technologies. Thanks to their enhanced functionality, DG controllable-polarity FETs implement arith- metic functions, such as XOR and MAJ, with limited physical resources enabling compact and high-performance datapaths. In order to design digital circuits with this technology, automated design techniques are of paramount importance. In this paper, we describe a design automation framework for DG controllable- polarity transistors. First, we present a novel dedicated logic representation form capable to exploit the polarity control during logic synthesis. Then, we tackle challenges at the physical level, presenting a regular layout technique that alleviates the interconnection issue deriving from the second gate routing. We use logic and physical synthesis tools to form a complete design automation flow. Experimental results show that the proposed flow is able to reduce the area and delay of digital circuits, based on 22-nm DG controllable-polarity SiNWFETs, by 22% and 42%, respectively, as compared to a commercial synthesis tool. With respect to a 22-nm FinFET technology, the proposed flow produces circuits, based on 22-nm DG controllable-polarity SiNWFETs, with 2.9x smaller area-delay product

    A Survey on Low-Power Techniques with Emerging Technologies: From Devices to Systems

    Get PDF
    Nowadays, power consumption is one of the main limitations of electronic systems. In this context, novel and emerging devices provide us with new opportunities to keep the trend to low-power design. In this survey paper, we present a transversal survey on energy efficient techniques ranging from devices to architectures. The actual trends of device research, with fully-depleted planar devices, tri-gate geometries and gate-all-around structures, allows us to reach an increasingly higher level of performance while reducing the associated power. In addition, beyond the simple device properties enhancements, emerging devices also lead to innovations at circuit and architectural levels. In particular, devices whose properties can be tuned through additional terminals enable a fine and dynamic control of device threshold. They also enable designers to realize logic gates and to implement power-related techniques in a compact way unreachable to standard technologies. These innovations reduce the power consumption at the gate level and unlock new means of actuation in architectural solutions like adaptive voltage and frequency scaling

    Majority-based Synthesis for Nanotechnologies

    Get PDF
    We study the logic synthesis of emerging nanotechnologies whose elementary devices abstraction is a majority voter. We argue that synthesis tools, natively supporting the majority logic abstraction, are the technology enablers. This is because they allow designers to validate majority-based nanotechnologies on large-scale benchmarks. We describe models and data-structures for logic design with majority-based nanotechnologies and we show results of applying new synthesis algorithms and tools. We conclude that new logic synthesis methods are required to achieve a fair assessment on emerging nanotechnologies

    New Data Structures and Algorithms for Logic Synthesis and Verification

    Get PDF
    The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor (FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher circuit density at reduced costs. To keep pace with technology, EDA tools are challenged to handle both digital designs with growing functionality and device models of increasing complexity. Nevertheless, whereas the downscaling of CMOS technology is requiring more complex physical design models, the logic abstraction of a transistor as a switch has not changed even with the introduction of 3D FinFET technology. As a consequence, modern EDA tools are fine tuned for CMOS technology and the underlying design methodologies are based on CMOS logic primitives, i.e., negative unate logic functions. While it is clear that CMOS logic primitives will be the ultimate building blocks for digital systems in the next ten years, no evidence is provided that CMOS logic primitives are also the optimal basis for EDA software. In EDA, the efficiency of methods and tools is measured by different metrics such as (i) the result quality, for example the performance of a digital circuit, (ii) the runtime and (iii) the memory footprint on the host computer. With the aim to optimize these metrics, the accordance to a specific logic model is no longer important. Indeed, the key to the success of an EDA technique is the expressive power of the logic primitives handling and solving the problem, which determines the capability to reach better metrics. In this thesis, we investigate new logic primitives for electronic design automation tools. We improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. We develop synthesis tools exploiting the majority and biconditional expressiveness. Our tools show strong results as compared to state-of-the-art academic and commercial synthesis tools. Indeed, we produce the best results for several public benchmarks. On top of the enhanced synthesis power, our methods are the natural and native logic abstraction for circuit design in emerging nanotechnologies, where majority and biconditional logic are the primitive gates for physical implementation. We accelerate formal methods by (i) studying properties of logic circuits and (ii) developing new frameworks for logic reasoning engines. We prove non-trivial dualities for the property checking problem in logic circuits. Our findings enable sensible speed-ups in solving circuit satisfiability. We develop an alternative Boolean satisfiability framework based on majority functions. We prove that the general problem is still intractable but we show practical restrictions that can be solved efficiently. Finally, we focus on reversible logic where we propose a new equivalence checking approach. We exploit the invertibility of computation and the functionality of reversible gates in the formulation of the problem. This enables one order of magnitude speed up, as compared to the state-of-the-art solution. We argue that new approaches to solve EDA problems are necessary, as we have reached a point of technology where keeping pace with design goals is tougher than ever
    corecore