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Abstract—Double-gate (DG) controllable-polarity field-effect
transistors (FETs) are devices whose n- or p- polarity is online
configurable by adjusting the second gate voltage. Such emerg-
ing transistors have been fabricated in silicon nanowires, car-
bon nanotubes, and graphene technologies. Thanks to their en-
hanced functionality, DG controllable-polarity FETs implement
arithmetic functions, such as XOR and MAJ, with limited physi-
cal resources enabling compact and high-performance datapaths.
In order to design digital circuits with this technology, automated
design techniques are of paramount importance. In this paper,
we describe a design automation framework for DG controllable-
polarity transistors. First, we present a novel dedicated logic rep-
resentation form capable to exploit the polarity control during
logic synthesis. Then, we tackle challenges at the physical level,
presenting a regular layout technique that alleviates the intercon-
nection issue deriving from the second gate routing. We use logic
and physical synthesis tools to form a complete design automation
flow. Experimental results show that the proposed flow is able to
reduce the area and delay of digital circuits, based on 22-nm DG
controllable-polarity Silicon nanowire (SiNW) FETs, by 22% and
42%, respectively, as compared to a commercial synthesis tool.
With respect to a 22-nm FinFET technology, the proposed flow
produces circuits, based on 22-nm DG controllable-polarity SiN-
WEFETs, with 2.9 X smaller area-delay product.

Index Terms—CAD, controllable-polarity field-effect transistors
(FETs), double-gate (DG) FETs, logic synthesis, nanotechnology,
silicon nanowires.

I. INTRODUCTION

S we advance into the era of nanotechnology, semicon-

ductor devices are scaled down to their physical limits.
In this nanometer regime, most devices inherently exhibit a su-
perposition of electrons and holes as majority charge carriers.
Even though this feature is usually suppressed by technological
processing steps, selecting online the device polarity, i.e., the
type of majority charge carriers, is of high interest at the design
level. Double-gate (DG) field-effect transistors (FETs) based on
silicon [1], carbon [2], and graphene [3] nanowires, are capable
to control online the device polarity by configuring the voltage
at the second gate.
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Such emerging transistors with controllable polarity are in-
trinsically more expressive than standard unipolar transistors.
Indeed, the logic functionality of a DG controllable-polarity
FET is biconditional on two gates [4], while the operation of
a standard unipolar transistor only depends on one gate. This
feature makes possible to implement arithmetic logic with fewer
physical resources as compared to standard unipolar FETs.
Moreover, random control logic has the same cost as with
standard unipolar FETs since fixed unipolar behavior can be
emulated by biasing the voltage at the second gate. New oppor-
tunities arise for enhanced digital designs based on controllable-
polarity transistors. However, challenges also appear when at-
tempting to exploit such opportunities in an automated design
flow, e.g., manipulation of new Boolean primitives, layout reg-
ularity, routing congestion related to the second gate, etc.

In this paper, we present a design automation framework aim-
ing at unlocking the full potential of DG controllable-polarity
FETs. At the logic synthesis level, we introduce biconditional
binary decision diagrams (BBDDs), a novel canonical logic
representation form driven by the biconditional expansion. The
biconditional logic connective is at the basis of the operation
for both BBDDs and DG controllable-polarity FETs. As a con-
sequence, BBDDs are an appropriate logic representation form
for the synthesis of circuits based on controllable-polarity tran-
sistors. At the physical design level, we present Sea-of-Tiles
(SoTs), a novel efficient layout technique. The SoT addresses
the need for layout regularity at advanced technology nodes,
and at the same time, alleviate the interconnection issue deriv-
ing from the second gate routing in DG controllable-polarity
FETs. To support the automated mapping of transistor netlists
onto SoT structures, we present SATSoT, a methodology based
on Boolean satisfiability (SAT) that endeavors to minimize the
wiring complexity for DG controllable-polarity FETs. We use
BBDDs and SATSoT methodologies together to obtain the first
complete (from logic to physical synthesis) and dedicated de-
sign automation framework targeting DG controllable-polarity
transistors. Experimental results show that digital circuits based
on DG controllable-polarity FETs, in silicon nanowires 22-nm
technology, designed by the proposed flow are 22% smaller and
42% faster than the same circuit synthesized by a commercial
synthesis tool. Compared to FinFET 22-nm technology, the de-
signed circuits have 2.9x smaller area-delay product.

The remainder of this paper is organized as follows. Section I1
first provides a technology background for controllable-polarity
transistors, with an emphasis on silicon nanowires technology.
Then, it provides a design automation background related to
the proposed synthesis techniques. In Section III, BBDDs are
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Fig. 1. Conceptual structure of a DG controllable-polarity FET with vertically
stacked SINWs [1].

presented and employed in a novel logic synthesis method-
ology. Section IV introduces the SoTs regular layout fabric
and the associated automated transistor mapping technique.
Section V first describes a complete design flow based on BBDD
and SoT methodologies. Then, it presents a design case study
for datapath circuits and other relevant experimental results. In
Section VI, the effectiveness of the proposed design flow is dis-
cussed in light of experimental results. This paper is concluded
in Section VII.

II. BACKGROUND

This section first provides background on DG controllable-
polarity FETs with an emphasis on Silicon nanowire (SINW)
technology. Then, it presents the state-of-the-art for electronic
design automation (EDA) methodologies employed in the rest
of this paper.

A. DG Controllable-Polarity SINWFETs

The DG controllable-polarity transistors are devices whose
majority charge carriers type (electrons or holes) can be con-
figured online by adjusting the voltage at the second gate. First
demonstrated by devices based on carbon nanotubes [2], such
advantageous feature has been extended to graphene [3] and
silicon nanowires [1] technologies. As the natural evolution
of FinFET structure, SINWs are a promising platform for DG
controllable-polarity devices thanks to their high I, /I ¢ ratio
and CMOS compatible fabrication process [1]. The conceptual
structure for a DG controllable-polarity SINWFET is shown
in Fig. 1. It consists of three vertically stacked SINWs and three
gated regions. Note that it is also possible to realize stacks with
less/more than three nanowires. The side regions are tied to-
gether to the polarity gate (PG), while the central region is tied
to the control gate (CG). The PG tunes the Schottky barriers
at the S/D junctions, therefore, selecting the type of majority
charge carriers injected in the channel. Then, the CG modulates
the amount of carriers flowing into the channel. When the PG is
biased with a logic value “1” (V,.) voltage, the majority carri-
ers are electrons (n-type configuration), while when the second
gate voltage corresponds to a logic value “0” (V) the majority
carriers are holes (p-type configuration).
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Fig. 2. (a) DG controllable-polarity FETs (re)configuration. (b) Full swing
XOR-2 gate in static style, with four devices [7] . (c) Full swing XOR-3 gate
in transmission gate style, with four devices [8]. (d) Full swing MAJ-3 gate in
transmission gate style, with four devices [4].

The electrical symbol for a DG controllable-polarity FET
with its online polarity configuration is depicted by Fig. 2(a).
The enhanced functionality deriving from the polarity con-
trol, makes possible to implement complex Boolean func-
tions with fewer resources as compared to traditional unipo-
lar devices. Fig. 2(b) depicts a XOR-2 logic gate implemented
with only four devices [7], while the static CMOS counter-
part employs 2x more devices, input inverters apart [9]. In
Fig. 2(c)—(d), a XOR-3 [8] and majority-3 [4] gates are
shown employing only four controllable-polarity transistors
each, while the static CMOS counterpart employs 3.5x more
devices [11]. Since majority and XOR functions form the core
of arithmetic operations, datapath circuits are expected to be
efficiently realizable with DG controllable-polarity FETs. Un-
fortunately, current CMOS-oriented EDA methods and tools are
not well suited to fully exploit such opportunity.

B. EDA

EDA is a corner stone for modern electronics supporting the
exponential growth of integrated circuits complexity. We focus
here on the core design flow consisting of logic synthesis and
physical design tasks.

Logic synthesis transforms a behavioral description of a
Boolean function into a netlist of logic cells, or gates, minimiz-
ing some objective metrics such as area, delay, and power. The
effectiveness of logic synthesis heavily depends on the data rep-
resentation structure employed. Driven by the advance of CMOS
technology, AND/OR/MUX-oriented representation forms and
related synthesis techniques [13]-[18] have been developed and
highly optimized. With novel technologies and related Boolean
primitives, dedicated logic representation forms and synthesis
methods are desirable to fully exploit the expressiveness of a
new device. In Section III, we present a novel logic representa-
tion form that shares the same core logical connective with DG
controllable-polarity FETs.
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Fig. 3. BBDD internal node.

Physical design aims to place and route logic cells into a chip,
minimizing again area, delay, and power. In this context, layout
floorplanning is critical to maximize the chip manufacturability.
As minimum feature sizes continue to shrink, regularity is one
of the key features to increase the yield. Moreover, with novel
devices that exhibit multiple gates, regularity is of paramount
importance to keep the routing complexity under control. Hence,
regular layout fabrics are crucial in the era of nanotechnology.
In Section IV, we present a regular layout technique aiming
to reduce the routing complexity of DG controllable-polarity
FETs, while maximizing the yield.

1. BBDSs

In this section, we present BBDDs [4], a data representa-
tion structure sharing the same core logical connective with DG
controllable-polarity FETs. The first part of this section is ded-
icated to introduce the BBDDs basic theory. The second part of
this section presents a logic synthesis method based on BBDDs
targeting DG controllable-polarity FETs .

A. BBDD Theory

BBDDs [4] are a canonical extension of original binary de-
cision diagrams (BDDs) [19]. Fundamentals for BBDDs are
given hereafter.

1) BBDD Fundamentals: A BBDD is a direct acyclic graph
representing a Boolean function f(v,w,...,z). A BBDD is
uniquely identified by its root, the set of internal nodes, the
set of edges, and the 1/0-sink nodes. Informally, each BBDD
node has the logic functionality of a multiplexer driven by an
exclusive-nor operation. More formally, each internal node (see
Fig. 3) in a BBDD is labeled by two Boolean variables: v, the
primary variable (PV), and w, the secondary variable (SV), and
has two out-edges labeled PV # SV and PV=SV. Each inter-
nal node represents the biconditional expansion with respect to
Boolean variables v and w

f(U7w’ ) Z)

(wdw)- flw w,.., 2)
+(’U@U}) ’ f(w7wa ) Z)

ey

where the symbol & represents the XOR operator.

The PV # SV and PV = SV edges connectto f(w', w, ..., 2)
and f(w,w, ..., z) functions, respectively. Functions of a single
variable v cannot be directly decomposed by the biconditional
expansion in (1). In such a condition, v is assigned to the PV
and a fictitious variable w = 1 is introduced and assigned to

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 13, NO. 6, NOVEMBER 2014

the SV, collapsing the biconditional expansion into a Shannon’s
expansion. With this boundary condition, any Boolean function
can be fully decomposed and represented with a BBDD.

2) BBDD Ordering: Constraining the order of variable ap-
pearance in every root to sink path is one of the requirements
to achieve canonicity in BBDDs. For this purpose, the chain
variable order (CVO) is introduced in [4] imposing a variable
order on all root to sink paths for PVs and a rule for the adjacent
SVs. Given a Boolean function f and an input variable order
7w = (7,71, -, Tn—1), the CVO assigns PVs and SVs by levels
as

PVi = T
SV =mi1
)

CVO Example: From 7 = (a, b, ¢), the corresponding CVO
ordering is obtained by the following method. First, PV, =
a, PVy =b, and SVy = b, SV; = ¢ are assigned. Then, the
final boundary conditions of (2) are applied as PV, = ¢ and
SV, = 1. The consecutive ordering by couples (PV;, SV;) is
thus ((a, b), (b, ¢), (¢, 1)).

Note that the particular CVO employed influences the size
of the BBDD. Reordering techniques [20] are extendable from
BDDs to BBDDs to search advantageous input variable orders
minimizing the BBDD size.

3) BBDD Reduction and Canonicity: Inorder toimprove the
representation efficiency, BBDDs should be reduced according
to a set of rules. A BBDD is said reduced when it respects the
following rules.

R1) It contains no two nodes, root of isomorphic subgraphs.

R2) It contains no nodes with identical children.

R3) It contains no empty levels.

R4) Subgraphs representing single variable functions de-
generates into a single node with SV=1.

BBDDs ordered and reduced are unique for a given input vari-
able order T = (mg, 71, ..., ™, 1 ). Such feature, called canonic-
ity, is advantageous in VLSI design and testing where intrinsic
minimization and uniqueness of the data representation struc-
ture is of high interest.

Canonicity is preserved if a complement attribute is enabled
only at PV # SV edges. Edges with a complemented attribute,
commonly referred to as complemented edges, indicate to invert
the function pointed by that edge. We refer the reader to [4] for
detailed proofs about BBDD canonicity.

Unless specified otherwise, we refer hereafter to BBDDs as
to ordered and reduced BBDDs.

4) BBDD Examples: Fig. 4 depicts the BBDDs for some
logic functions of interest in today’s designs. In Fig. 4(a), a
6-bit parity function is represented with three nodes and three
levels. Note that rule R3 eliminated half of the levels originally
allocated for the BBDD of the 6-bit parity function. This is
thanks to the expressiveness of a BBDD node handling two
variables per time. Fig. 4(b and (d) shows the BBDDs for mixed
AND/OR-XOR intensive functions that frequently appear in
datapath circuits. In Fig. 4(c), a three-input majority function is
represented with three nodes and three levels. Together with the

PVH,1 = Thn-1

withi = 0,1, ...,n — 2;
Svn—l =1
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n=(a,b,c,d,e,g) n=(a,b,c,d)

Fig. 4.
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Fig.5. Direct mapping of a single BBDD internal node onto DG controllable-
polarity FETs.

parity check, the majority function is a basis for binary addition
representing the carry propagation.

For the sake of clarity, we comment on how the expression
f = (a®b)(b+ c¢) in Fig. 4(d) can be obtained by parsing the
biconditional expansions in the BBDD. The top node in Fig. 4(d)
represents a biconditional expansion with respect to variables
a and b. It connects to logic O on its different child and to
another node, say g, on its equal child. As per (1), we can thus
write f = (a®b) - 0+ (a®b) - g = (a®b) - g. With analogous
reasoning for g, we getg = (b @ c) - 1+ (b®c) - c= (b D c) +
bc = b+ c. Recalling that f = (a®b) - g, we can finally obtain
f=(a®b) - (b+c).

B. Logic Synthesis Based on BBDDs

Being remarkably compact and canonical, BBDDs find
proper use in logic synthesis. We focus here on the applica-
tion to DG controllable-polarity FET technology.

1) BBDD Nodes and DG Controllable-Polarity FETs: The
functionality of a BBDD node and the operation of a DG
controllable-polarity FET are strictly related. Indeed, both of
them are driven by the biconditional logical connective. This
feature opens up the opportunity to directly map BBDDs onto
DG controllable-polarity FETs. Fig. 5 depicts an efficient map-
ping of a BBDD node onto only four DG controllable-polarity
FETs. Nodes reduced by rule R4 do not need any transistor to be
mapped but can be simply wired to the input variable assigned
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n=(a,b,c)

Examples for BBDD representation of 3 to 6 variables logic functions. (a) Parity, (b, d) mixed AND/OR-XOR, and (c) majority functions are considered.

f=(a®b)(b+c) f=(a@®b)(b+c)

Fig. 6. Example for direct DG controllable-polarity FET mapping onto BB-
DDs. The target function is the same as in Fig. 4(d).

to the PV. Complemented edges are mapped by a static inverter
gate. Using these rules, it is possible to transpose any BBDD into
its DG controllable-polarity FET implementation. Fig. 6 depicts
the direct mapping for the target function f = (a®b)(b + ¢).
The top and intermediate BBDD nodes are translated into two
successive four devices patterns. Each one implements a bicon-
ditional expansion, as per Fig. 5. The last node is subject to
rule R4, and therefore, simply wired to its PV variable: c. Fi-
nally, edges pointing to the BBDD sink and its complement, are
replaced with connections to logic 1 and logic 0, respectively.
From a logic perspective, the obtained circuit is a functional
clone of the original BBDD.

In order to avoid unbounded stacking of transistors, and there-
fore, an excessive delay, buffering is required every four consec-
utive mapped BBDD nodes. This limits the maximum number
of stacked devices to 4, similarly as in today’s standard cells
libraries.

2) Bottom-up BBDD-Based Logic Synthesis: Even though
BBDDs compactness is promising, monolithic BBDDs may be
inappropriate to represent some large combinational design. As
a consequence, the direct mapping of DG controllable-polarity
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FETs onto such kind of BBDDs is not efficient. We propose a
bottom-up synthesis approach to address this limitation.

Algorithm 1 Bottom-up BBDD-based Logic Synthesis for
DG Controllable-Polarity FETs.

INPUT: Flattened HDL into Boolean primitives
OUTPUT: Netlist of DG controllable-polarity FETs
BBDDsize=0;
ProcessedEquations«—primary inputs;
BBDDinputs«—primary inputs;
BBDDroots=0);
while 3 unsorted Boolean equations do
scan for eq. y whose inputs € ProcessedEquations;
build BBDD for y via APPLY operator;
if size-metric(BBDDsize,BBDDinputs)>threshold,
then
BBDDinputs« y;
BBDDroots«+ y;
end if
if y € primary outputs then
BBDDroots«— y;
end if
ProcessedEquations«— y;
end while
netlist=0;
for all BBDDinputs o do
netlist<input inverter for «;
end for
for all BBDDroots w do
netlist«—output buffer for w;
netlist«—recursively map w and its children (insert a
buffer every four consecutive nodes);
end for

As for traditional binary decision diagrams, also BBDDs can
be built bottom up using an APPLY operator. The APPLY op-
erator builds f ® g, with ® being any Boolean function of two
arguments and f and g two given BBDDs (ordered by the same
CVO). Thanks to the representation canonicity, the APPLY op-
erator can be efficiently implemented in software via recursion,
having a worst-case complexity of O(| f| - |g|), where | f] and |g]|
are the number of nodes of the BBDDs of f and g, respectively.

The rationale behind the bottom-up BBDD-based logic syn-
thesis is the following: BBDDs are built depth-first from inputs
to outputs of the logic network using an APPLY operator and
decomposition points are inserted whenever a BBDD size met-
ric is exceeded. Such size metric describes a polynomial relation
between the number of BBDD inputs and the number of BBDD
nodes (BBDD size). An adequate degree for the polynomial
and a proper threshold value must be heuristically determined.
This ensures that none of the individual BBDDs are dispropor-
tionately large with respect to the represented function. Conse-
quently, the direct mapping of DG controllable-polarity FETs
onto such BBDDs remains efficient. Note, however, that this
approach yet remains an heuristic, i.e., with no guarantees on
the decomposition optimality.
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Algorithm 1 shows the pseudocode for the proposed syn-
thesis methodology. The input of the algorithm is an HDL de-
scription flattened onto Boolean primitives, e.g., two operands
Boolean operators. The output is a netlist of interconnected DG
controllable-polarity FETSs. The first while loop builds bottom-
up BBDDs parsing the input HDL. If during the BBDD con-
struction the logic network size exceeds a threshold, then a
decomposition point is inserted. At the end of the while loop,
a pool of interconnected BBDDs has been built for the target
design. The successive phase consists of mapping BBDDs onto
DG controllable-polarity FETs. This task is accomplished using
the direct mapping strategy previously presented. Additionally,
buffers are inserted every four consecutive BBDD nodes mapped
to limit the maximum number of stacked devices.

We report a complete example of HDL to DG controllable-
polarity FET synthesis. In the following listing, a Verilog de-
scription for the function f = (a®b)(b + ¢) (see Fig. 4(d), 6) is
shown. This is the input to our synthesis methodology.

module HDL (

a, b, c,

£ )
input a,
output f;
wire n4, n5;
assign nd =
assign nb
assign f

endmodule

The synthesis process starts by building the BBDD represen-
tation for each Boolean equation, in topological order (bottom-
up). Equation n4 is represented with one BBDD node. Equation
n5is represented with two BBDD nodes. The final equation f
counts three BBDD nodes [see Fig. 4(d)]. Since this objective
function is efficiently represented by BBDDs, no size-threshold
is exceeded and no decomposition is applied. However, decom-
position is likely to happen for harder designs. For example,
in the synthesis of a multiplier decomposition points are of-
ten inserted, as the BBDD size tends to increase rapidly. After
the bottom-up construction, DG controllable-polarity FET are
directly mapped onto the BBDD for f. The resulting transistor-
level netlist is depicted by the succeeding listing.

module DGFETnetlist (

a, b, c,
£ )
input a,
output f;

wire ab, bb,

supply0 g;

supplyl v;

dgfet ul0(.s(g),.cg(a), .pg(g), .
d(ab));//inv a

dgfet ul(.s(v),.cg(a), .pg(
d(ab));//inv a

dgfet u2(.s(g),.cg(b), .pgl(g), .
d(bb));//inv b

dgfet u3(.s(v),.cg(b), .pg(
d(bb));//inv b

b, c;

~a ~ b;
b | c;
nd & nb5;

b, c¢;

cb, nl, n2;

V), .

V), .
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dgfet ud(.s(g),
d(cb));//inv c

dgfet u5(.s(v),.cgl(c), .pg(v
d(cb));//inv ¢

dgfet u6(.s(cb), .cg(b), .pg(c
d(nl));//nodel

dgfet u7(.s(cb), .cg(bb), .pg(cb), .
d(nl));//nodel

dgfet u8(.s(g), .cg(bb), .pgl(c
d(nl));//nodel

dgfet u9(.s(g), .cg(b)
d(nl));//nodel

dgfet ul0(.s(nl),.cg(a), .pg(b),.
d(n2));//node2

dgfet ull(.s(nl),
d(n2));//node2

dgfet ul2(.s(v),.cg(ab), .pg(b), .
d(n2));//node2

dgfet ul3(.s(v),.cg(a), .pg(bb), .
d(n2));//node2

dgfet ul4(.s(g),
d(f));//inv out

dgfet ul5(.s(v),.cg(n2), .pg(v
d(f));//inv out

endmodule

First, static inverters for a, b, ¢ inputs are instantiated, to pro-
vide the required complementary signals. Then, BBDD nodes
are transposed into the four-device pattern presented in Section
II1-B-1). Buffering is applied at the output. Note that, as most
mapping tools automatically do, the logic implementation po-
larity is chosen to minimize the inverter stages, and thus, the
number of logic levels.

The obtained DG controllable-polarity FET implementation
counts 16 devices and 3 levels of logic. Instead, its standard
CMOS counterpart features 22 devices and 4 levels of logic.

So far, we presented a logic synthesis methodology ca-
pable to natively harness the enhanced functionality of DG
controllable-polarity FETs. However, in order to preserve the
benefits enabled by logic synthesis, a proper physical design
technique is needed to handle technological issues related to
DG controllable-polarity FETs.

.cg(c), .pg(g), .
)I'

)I'

)I'

, .pg(cb), .

.cg(ab), .pg(bb), .

.cg(n2),.pg(g),.

).

IV. SoTs

In this section, we sketch a novel regular layout fabric for DG
controllable-polarity FETs, called SoTs [5]. The first part of
this section introduces the concept of an SoT describing a logic
tile and its corresponding layout symbol. Later, an automated
method to map netlist of transistors onto the SoT is presented.

A. SoT and Symbolic Layouts

Layout regularity is one of the key features required to in-
crease the yield of integrated circuits at advanced technology
nodes. The SoT is a configurable architecture, in which an array
of logic tiles are uniformly spread across the chip [5].
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Fig. 7. DG controllable-polarity FET and its symbolic layout.
Fig. 8. (a) Tileg, with DG controllable-polarity FET (a). (b) XOR-2 config-

uration and (c) NAND-2 configuration [5].

1) Logic Tile: A logic tile is an array of DG controllable-
polarity FETs transistors. The symbolic layout for a DG
controllable-polarity FET is depicted by Fig. 7.

Two DG controllable-polarity FETs are said grouped if they
are adjacent and share their polarity gates. They are said paired
if they share the control gates. In a logic tile, DG controllable-
polarity FETs are paired and grouped together. Different sizes
are possible for a logic tile, e.g., a Tileg, is an array of n
transistor pairs grouped together. In this paper, we focus on the
Tileg, , depicted by Fig. 8(a), since it has the best area efficiency
as compared to other tile sizes [5].

Various logic gates can be realized by configuring Tileg, .
A Tileq, configuration consists of connecting the nodes (nl—
n6) and gates (gl, g2, G1, and G2) to appropriate inputs. For
example, XOR-2 and a NAND-2 configurations are depicted by
Fig. 8(b) and (c), respectively. While the complexity of logic
gates realized within a single Tileg, is limited, any complex
logic function can be obtained by considering an array of Tileq, .
Note that also sequential logic elements, e.g., flip—flops, can be
implemented by an array of Tilec, [10].

2) SoTs: Inthis study, we define an SoT as a regular arrange-
ment of Tileg, on a chip. The size of an SoT is the number of
rows times the number of columns of elementary Tileg,. By
floorplanning the SoT into different islands, each one perform-
ing a specific function, it is possible to realize complex digital
systems with a very regular layout. For the sake of illustra-
tion, Fig. 9 shows a SoT floorplanned, for example, into six
top logic units: an arithmetic logic unit, random control logic,
read only memory, parity check circuitry, input/output logic, and
sequential logic (FF). After high-level floorplanning, the logic
functionality desired for each unit has to be physically mapped
by connecting tile’s nodes and gates. While the floorplanning
task can be efficiently carried out with state-of-art techniques,
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Fig. 9. Example SoT based on Tilec, . After floorplanning, the SoT consists

of different logic units.

the physical configuration of each Tile;, needs more attention
due to the routing congestion related to the second gate. For
large designs, automated methods are needed to address this
task.

Originally, the SoT concept has been introduced for the
SiNW technology [5]. However, it can be extended to other
controllable-polarity technologies, such as carbon or graphene
nanotubes. Indeed, in all technologies, controllable-polarity
transistors have four terminals, i.e., two independent gates, a
source, and a drain. Therefore, the symbolic layout shown in
Fig. 7, and its related layout techniques, remain valid regard-
less of the technological implementation. In this study, we do
not deal with specific physical issues, such as misaligned car-
bon nanotubes or nanowires diameter fluctuations, to maintain
the design flow technology agnostic. Note that design tech-
niques addressing such specific problems can be successively
integrated.

B. Transistor Mapping onto SoT

The automated mapping of a previously synthesized transistor
netlist onto an SoT is key to keep the wiring complexity under
control while implementing the desired functionality. To address
this task, we introduce here a transistor mapping technique based
on the SAT [6], and its related tool, called SATSoT.

The SAT consists of determining whether there exists or not
an interpretation of a Boolean formula, in conjunctive normal
form, that evaluates to true. While SAT is in general a difficult
problem, it benefits from a large panel of solvers [21]-[24] that
keep on being improved.

The rationale behind SATSoT is the following. A first set of
Boolean formulae are built to impose a valid transistor place-
ment (respecting the desired logic functionality) of the netlist
into the SoT. A second set of Boolean formulae are built to min-
imize the wiring complexity by enforcing that pins assigned to
the same nets are close to each other. Then, an SAT solver tool
is employed to search a solution, if any, to all Boolean formulae
AND-ed together. If no solution is found, the wiring complexity
constraints are relaxed and a new SAT instance is run. SATSoT
is set to start with a strong set of constraints and progressively
relax them until a satisfiable instance is found. We refer the
reader to [6] for details about the SAT instance formulation in
SATSoT .
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Fig. 10.
with no gate swap allowed, (b) mapping with gate swap allowed.

Mapping the transistor netlist in Fig. 6 ontoa 1 x 2 SoT: (a) mapping

SATSoT is guaranteed to find a valid transistor mapping only
if it is given in input a large enough SoT, i.e., an I x J grid of
Tileg, . The minimal sizes I and J are determined by the number
of DG controllable-polarity FETs to map. SATSoT is intended
to map netlist with a limited number of devices, therefore, some
prior logic decomposition technique must generate a transistor
netlist of proper granularity. It is worth noticing that SATSoT
achieves obliquely a wiring complexity reduction, by enforcing
a maximum sharing between terminals. Standard P&R tools can
then be used to get a global layout [29].

V. DESIGN FLow: BBDD-SOT

A logic synthesis and a physical design flow for DG
controllable-polarity FETs have been presented in the previous
sections. By combining these two approaches, we obtain the first
complete design flow targeting controllable-polarity transistors.

A. BBDD-SoT

The BBDD-SoT design flow consists of BBDD-based logic
synthesis followed by physical synthesis onto a SoT grid. The
linking between the BBDD and SoT is described hereafter.

1) Linking BBDD and SoT: The BBDD-based synthesis pro-
cedure in Algorithm 1 receives as input a flattened HDL descrip-
tion and gives in output a netlist of DG controllable-polarity
FETs directly derived by BBDD structures. Given the number
of devices in the netlist, a proper size for the SoT grid is deter-
mined and floorplanning partitions the chip area into the major
functional blocks in the design. SATSoT is then used to map
each set of DG controllable-polarity FETs, deriving from dis-
tinct BBDDs, onto the SoT. While in its original conception
SATSoT is not allowed to modify the transistor netlist inter-
connection, in the BBDD-SoT flow this is a desirable feature.
In particular, when SATSoT assigns the four DG controllable-
polarity FETs configuration of Fig. 5 to a Tiles,, the PG and
CG signals can be always swapped without affecting the func-
tionality of the circuit. Such operation reveals to be useful for
adjacent tiles sharing some nets connections. For the sake of
illustration, an example is given in Fig. 10. Starting from the
mapped BBDD in Fig. 6 and its corresponding transistor netlist,
an 1 x 2 SoT is instantiated, input inverters apart. In Fig. 10(a),
the automatically mapped SoT is depicted, with no gate swap
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TABLE I
AUTOMATED DESIGN OF 64-BIT DATAPATH CIRCUITS

Datapaths DG Controllable -Polarity SINWFET FinFET
BBDD-SoT Commercial Tool ~ Commercial Tool
pum? ns pm? ns pum? ns

adder 108.19  1.02 12232 3.70 93.02 7.01
equality 30.92 0.37 44.80 0.12 36.18 0.20
magnitude 60.85 1.02 71.93 1.13 44.17 2.30
barrel 20638  0.71 281.35 0.30 180.50 0.58
multiplier 1.45k 1.42 1.91k 0.99 1.41k 1.78
average 371.26 090  486.08 1.24 352.60 2.37

allowed. Adjacent gate signals are assigned to different nets.
In Fig. 10(b), gate swap is enabled and internal polarity gates
in the SoT are assigned to the same net. In the latter case, the
circuit layout is further optimized as the routing complexity
is decreased, and therefore, the impact on performance is also
reduced. In our simplified design flow, no delay variation is
assumed from gate-swap operations. The actual delay is then
evaluated postsynthesis.

2) Methodology: The BBDD-SoT is a PERL wrapper for
a BBDD manipulation package, written in C language, and
SATSoT software, written in C++ language. To determine an
appropriate size threshold for Algorithm 1, we run several syn-
thesis experiments. We use BBDDreshold _size = 4 - |inputs|?
as it produces the best results on average. In order to evaluate the
advantage, in terms of absolute area and delay, of the BBDD-
SoT with respect to a traditional design flow, we consider a
SiNW implementation for DG controllable-polarity FETs. Ad-
ditionally, we provide also a comparison to standard unipolar
FinFET technology. A 22-nm technology node [30] is used to
characterize the devices performance, physical occupation, and
routing cost. The traditional flow is a standard-cell-based ap-
proach with a commercial synthesis tool fed with a library con-
sisting of primitive XOR-2, NAND-2, NOR-2, and INV gates.

B. Case Study: Automated Design of Datapath Circuits

Datapaths, based on arithmetic circuits, are critical compo-
nents in today’s integrated circuits. Double gate transistors with
controllable-polarity enable compact realizations for arithmetic
operations thanks to the enhanced device functionality. We study
here the automated design of datapath circuits. The bit width
considered is 64 bit. Adder, comparators, shifter, and multiplier
circuits are written in Verilog language. Table I shows the syn-
thesis results for the BBDD-SoT and the considered commer-
cial synthesis tool. BBDDs for adder, equality, and magnitude
benchmarks do not require any decomposition, as their size is
just linear with respect to the number of inputs. Barrel and mul-
tiplier benchmarks instead require decomposition points to keep
bounded the implementation cost. Especially in the multiplier
case, a monolithic BBDD is too large to be built and clearly
unfeasible for direct mapping. The decomposition capability of
the BBDD-SoT is indeed crucial in this scenario.

On an average, the BBDD-SoT produces the fastest datap-
aths with 0.90 ns, being about 37% faster than the counterparts
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TABLE II
AUTOMATED DESIGN OF MCNC CIRCUITS

Benchmarks DG Contr. Pol. SINWFET FinFET
BBDD-SoT Commercial Tool ~ Commercial Tool
pum? ns pum? ns pum? ns

majority 19 69.52 031 80.12 1.10 65.25 2.16
misex| 28.55 0.15  29.04 0.41 22.34 0.79
cordic 69.45 034  63.64 0.64 50.91 1.11
9symml 25.41 022 28.07 0.49 23.39 0.93
f51m 3581 0.16 6243 0.71 49.94 1.10
rd73 1839  0.17 19.11 0.41 15.05 0.63
clip 49.85 021  58.08 0.53 47.61 0.88
average 4242 022 48.64 0.61 39.21 0.94

designed by the commercial synthesis tool. Moreover, a BBDD-
SoT requires about 30% less area than the commercial synthesis
flow results. With respect to unipolar FinFET realizations, dat-
apaths based on DG controllable-polarity FETSs are 2.6 x faster
with a limited area occupation overhead of 5%.

C. Experimental Results

In addition to custom datapaths, we test BBDD-SoT with
XOR- and MAJ-intensive benchmarks from the MCNC suite.
Table II shows synthesis results for the MCNC circuits de-
signed by the BBDD-SoT and the considered commercial syn-
thesis tool. On average, a BBDD-SoT produces circuits about
3 x faster and, at the same time, 12% smaller than the counter-
parts designed by the commercial synthesis tool. With respect
to unipolar FinFET realizations, MCNC circuits based on DG
controllable-polarity FETs are 4x faster with a limited area
occupation overhead of 8%, mainly deriving from the second
gate area of DG SiNWFETs. The considerable logic speed up
in the BBDD-SoT is possible thanks to the beneficial BBDD
properties. Indeed, most of the circuits in Table II are efficiently
represented with a single BBDD, with no decompositions, hav-
ing a small number of nodes and levels. This is because XOR-
and MAJ-intensive circuits are efficiently decomposed by the
biconditional expansion, and thus, compactly represented by
BBDDs. Such compactness is directly transposed into the de-
signed circuit.

VI. DISCUSSIONS

The controllable-polarity feature in double-gate transistors
enables an unprecedented design flexibility. The BBDD-SoT
design flow demonstrated to further exploit such opportunity as
compared to other traditional flows. Employed in the synthesis
of datapaths, a BBDD-SoT intrinsically highlights XOR and
MAJ operators, which are the basis of arithmetic circuits, and
preserves their efficient implementation with DG controllable-
polarity FETs. Thanks to the regular layout technique in the
BBDD-SoT, the second gate routing has a limited impact on the
performance as compared to single gate unipolar technologies.
Also for general benchmarks, the efficiency of the BBDD-SoT
remains quite marked, as a result of the BBDD representation
efficiency and its native correspondence with controllable-
polarity transistors. Indeed, a traditional design flow is natively
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intended for CMOS technology and can miss some optimiza-
tion opportunities deriving from the novel controllable-polarity
feature. To test the efficiency of the BBDD-SoT with respect to
a traditional design flow we considered a commercial synthesis
tool as reference. The comparison metric employed is the area-
delay product. Fig. 11 shows the results for the BBDD-SoT, fed
with DG controllable-polarity SINWFETS, and a reference com-
mercial synthesis tool, fed with both DG controllable-polarity
SiNWFETs and unipolar FinFETs, all in 22-nm technology.

The BBDD-SoT flow produces circuit realizations with an
area-delay product of 89.50 (um? - ns), being 2.17 x smaller
than the commercial tool. Moreover, unipolar FinFET-based
circuits synthesized by the commercial synthesis flow have an
area-delay product of 260.70 (um? - ns), which is 2.9x larger
than the BBDD-SoT, confirming the notable advantage deriving
from controllable polarity.

Future work for the BBDD-SoT focuses on 1) dedicated floor-
planning techniques for automated partitioning of the SoT and
2) novel routing algorithms exploiting the properties of BBDD
structures mapped onto the SoT.

VII. CONCLUSION

Advanced nanotechnologies, such as SiNWs, carbon and
graphene nanotubes, present the opportunity to control online
the polarity of double-gate transistors. To fully harness such
new design flexibility, novel logical and physical synthesis tech-
niques are essential. In order to address this need, we presented a
BBDD-SoT, a complete design flow comprising innovative syn-
thesis methodologies explicitly efficient for DG controllable-
polarity FETs. At the logical level, the BBDD-SoT employs
biconditional binary decision diagrams, a logic representation
form sharing the same core functionality of controllable-polarity
devices. At the physical level, the BBDD-SoT uses a regular
layout technique, called SoTs, where arrays of prefabricated
devices are uniformly spread across the chip to minimize the
routing complexity. Compared to a commercial synthesis flow,
a BBDD-SoT is able to reduce the area and delay of digital
circuits, based on 22-nm DG controllable-polarity SINWFETS,
by 22% and 42%, respectively. With respect to a 22-nm Fin-
FET technology, the BBDD-SoT produces circuits, based on
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22-nm DG controllable-polarity SINWFETSs, with 2.9x smaller
area-delay product.
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