277 research outputs found

    Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings

    Full text link
    While evolutionary algorithms are known to be very successful for a broad range of applications, the algorithm designer is often left with many algorithmic choices, for example, the size of the population, the mutation rates, and the crossover rates of the algorithm. These parameters are known to have a crucial influence on the optimization time, and thus need to be chosen carefully, a task that often requires substantial efforts. Moreover, the optimal parameters can change during the optimization process. It is therefore of great interest to design mechanisms that dynamically choose best-possible parameters. An example for such an update mechanism is the one-fifth success rule for step-size adaption in evolutionary strategies. While in continuous domains this principle is well understood also from a mathematical point of view, no comparable theory is available for problems in discrete domains. In this work we show that the one-fifth success rule can be effective also in discrete settings. We regard the (1+(λ,λ))(1+(\lambda,\lambda))~GA proposed in [Doerr/Doerr/Ebel: From black-box complexity to designing new genetic algorithms, TCS 2015]. We prove that if its population size is chosen according to the one-fifth success rule then the expected optimization time on \textsc{OneMax} is linear. This is better than what \emph{any} static population size λ\lambda can achieve and is asymptotically optimal also among all adaptive parameter choices.Comment: This is the full version of a paper that is to appear at GECCO 201

    Runtime Analysis for Self-adaptive Mutation Rates

    Full text link
    We propose and analyze a self-adaptive version of the (1,λ)(1,\lambda) evolutionary algorithm in which the current mutation rate is part of the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn)O(n\lambda/\log\lambda+n\log n) when λ\lambda is at least ClnnC \ln n for some constant C>0C > 0. For all values of λClnn\lambda \ge C \ln n, this performance is asymptotically best possible among all λ\lambda-parallel mutation-based unbiased black-box algorithms. Our result shows that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. At the same time, it proves that a relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gie{\ss}en, Witt, and Yang~(GECCO~2017) can be replaced by our simple endogenous scheme. On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift

    Offspring Population Size Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates

    Full text link
    We analyze the performance of the 2-rate (1+λ)(1+\lambda) Evolutionary Algorithm (EA) with self-adjusting mutation rate control, its 3-rate counterpart, and a (1+λ)(1+\lambda)~EA variant using multiplicative update rules on the OneMax problem. We compare their efficiency for offspring population sizes ranging up to λ=3,200\lambda=3,200 and problem sizes up to n=100,000n=100,000. Our empirical results show that the ranking of the algorithms is very consistent across all tested dimensions, but strongly depends on the population size. While for small values of λ\lambda the 2-rate EA performs best, the multiplicative updates become superior for starting for some threshold value of λ\lambda between 50 and 100. Interestingly, for population sizes around 50, the (1+λ)(1+\lambda)~EA with static mutation rates performs on par with the best of the self-adjusting algorithms. We also consider how the lower bound pminp_{\min} for the mutation rate influences the efficiency of the algorithms. We observe that for the 2-rate EA and the EA with multiplicative update rules the more generous bound pmin=1/n2p_{\min}=1/n^2 gives better results than pmin=1/np_{\min}=1/n when λ\lambda is small. For both algorithms the situation reverses for large~λ\lambda.Comment: To appear at Genetic and Evolutionary Computation Conference (GECCO'19). v2: minor language revisio

    Self-Adjusting Population Sizes for Non-Elitist Evolutionary Algorithms: Why Success Rates Matter

    Full text link
    Evolutionary algorithms (EAs) are general-purpose optimisers that come with several parameters like the sizes of parent and offspring populations or the mutation rate. It is well known that the performance of EAs may depend drastically on these parameters. Recent theoretical studies have shown that self-adjusting parameter control mechanisms that tune parameters during the algorithm run can provably outperform the best static parameters in EAs on discrete problems. However, the majority of these studies concerned elitist EAs and we do not have a clear answer on whether the same mechanisms can be applied for non-elitist EAs. We study one of the best-known parameter control mechanisms, the one-fifth success rule, to control the offspring population size λ\lambda in the non-elitist (1,λ)(1,\lambda) EA. It is known that the (1,λ)(1,\lambda) EA has a sharp threshold with respect to the choice of λ\lambda where the expected runtime on the benchmark function OneMax changes from polynomial to exponential time. Hence, it is not clear whether parameter control mechanisms are able to find and maintain suitable values of λ\lambda. For OneMax we show that the answer crucially depends on the success rate ss (i.e. a one-(s+1)(s+1)-th success rule). We prove that, if the success rate is appropriately small, the self-adjusting (1,λ)(1,\lambda) EA optimises OneMax in O(n)O(n) expected generations and O(nlogn)O(n \log n) expected evaluations, the best possible runtime for any unary unbiased black-box algorithm. A small success rate is crucial: we also show that if the success rate is too large, the algorithm has an exponential runtime on OneMax and other functions with similar characteristics.Comment: This is an extended version of a paper that appeared in the Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2021

    Self-adjusting Population Sizes for Non-elitist Evolutionary Algorithms:Why Success Rates Matter

    Get PDF
    Evolutionary algorithms (EAs) are general-purpose optimisers that come with several parameters like the sizes of parent and offspring populations or the mutation rate. It is well known that the performance of EAs may depend drastically on these parameters. Recent theoretical studies have shown that self-adjusting parameter control mechanisms that tune parameters during the algorithm run can provably outperform the best static parameters in EAs on discrete problems. However, the majority of these studies concerned elitist EAs and we do not have a clear answer on whether the same mechanisms can be applied for non-elitist EAs. We study one of the best-known parameter control mechanisms, the one-fifth success rule, to control the offspring population size λ in the non-elitist (1, λ) EA. It is known that the (1, λ) EA has a sharp threshold with respect to the choice of λ where the expected runtime on the benchmark function OneMax changes from polynomial to exponential time. Hence, it is not clear whether parameter control mechanisms are able to find and maintain suitable values of λ. For OneMax we show that the answer crucially depends on the success rate s (i. e. a one-(s + 1)-th success rule). We prove that, if the success rate is appropriately small, the self-adjusting (1, λ) EA optimises OneMax in O(n) expected generations and O(n log n) expected evaluations, the best possible runtime for any unary unbiased black-box algorithm. A small success rate is crucial: we also show that if the success rate is too large, the algorithm has an exponential runtime on OneMax and other functions with similar characteristics

    On the choice of the parameter control mechanism in the (1+(λ, λ)) genetic algorithm

    Get PDF
    The self-adjusting (1 + (λ, λ)) GA is the best known genetic algorithm for problems with a good fitness-distance correlation as in OneMax. It uses a parameter control mechanism for the parameter λ that governs the mutation strength and the number of offspring. However, on multimodal problems, the parameter control mechanism tends to increase λ uncontrollably. We study this problem and possible solutions to it using rigorous runtime analysis for the standard Jumpk benchmark problem class. The original algorithm behaves like a (1+n) EA whenever the maximum value λ = n is reached. This is ineffective for problems where large jumps are required. Capping λ at smaller values is beneficial for such problems. Finally, resetting λ to 1 allows the parameter to cycle through the parameter space. We show that this strategy is effective for all Jumpk problems: the (1 + (λ, λ)) GA performs as well as the (1 + 1) EA with the optimal mutation rate and fast evolutionary algorithms, apart from a small polynomial overhead. Along the way, we present new general methods for bounding the runtime of the (1 + (λ, λ)) GA that allows to translate existing runtime bounds from the (1 + 1) EA to the self-adjusting (1 + (λ, λ)) GA. Our methods are easy to use and give upper bounds for novel classes of functions

    Self-adaptation in non-elitist evolutionary algorithms on discrete problems with unknown structure

    Get PDF
    A key challenge to make effective use of evolutionary algorithms is to choose appropriate settings for their parameters. However, the appropriate parameter setting generally depends on the structure of the optimisation problem, which is often unknown to the user. Non-deterministic parameter control mechanisms adjust parameters using information obtained from the evolutionary process. Self-adaptation -- where parameter settings are encoded in the chromosomes of individuals and evolve through mutation and crossover -- is a popular parameter control mechanism in evolutionary strategies. However, there is little theoretical evidence that self-adaptation is effective, and self-adaptation has largely been ignored by the discrete evolutionary computation community. Here we show through a theoretical runtime analysis that a non-elitist, discrete evolutionary algorithm which self-adapts its mutation rate not only outperforms EAs which use static mutation rates on \leadingones, but also improves asymptotically on an EA using a state-of-the-art control mechanism. The structure of this problem depends on a parameter kk, which is \emph{a priori} unknown to the algorithm, and which is needed to appropriately set a fixed mutation rate. The self-adaptive EA achieves the same asymptotic runtime as if this parameter was known to the algorithm beforehand, which is an asymptotic speedup for this problem compared to all other EAs previously studied. An experimental study of how the mutation-rates evolve show that they respond adequately to a diverse range of problem structures. These results suggest that self-adaptation should be adopted more broadly as a parameter control mechanism in discrete, non-elitist evolutionary algorithms.Comment: To appear in IEEE Transactions of Evolutionary Computatio
    corecore