467 research outputs found

    Self-Tuning Spectral Clustering

    Get PDF
    We study a number of open issues in spectral clustering: (i) Selecting the appropriate scale of analysis, (ii) Handling multi-scale data, (iii) Clustering with irregular background clutter, and, (iv) Finding automatically the number of groups. We first propose that a ‘local’ scale should be used to compute the affinity between each pair of points. This local scaling leads to better clustering especially when the data includes multiple scales and when the clusters are placed within a cluttered background. We further suggest exploiting the structure of the eigenvectors to infer automatically the number of groups. This leads to a new algorithm in which the final randomly initialized k-means stage is eliminated

    Analyzing and clustering neural data

    Get PDF
    This thesis aims to analyze neural data in an overall effort by the Charles Stark Draper Laboratory to determine an underlying pattern in brain activity in healthy individuals versus patients with a brain degenerative disorder. The neural data comes from ECoG (electrocorticography) applied to either humans or primates. Each ECoG array has electrodes that measure voltage variations which neuroscientists claim correlates to neurons transmitting signals to one another. ECoG differs from the less invasive technique of EEG (electroencephalography) in that EEG electrodes are placed above a patients scalp while ECoG involves drilling small holes in the skull to allow electrodes to be closer to the brain. Because of this ECoG boasts an exceptionally high signal-to-noise ratio and less susceptibility to artifacts than EEG [6]. While wearing the ECoG caps, the patients are asked to perform a range of different tasks. The tasks performed by patients are partitioned into different levels of mental stress i.e. how much concentration is presumably required. The specific dataset used in this thesis is derived from cognitive behavior experiments performed on primates at MGH (Massachusetts General Hospital). The content of this thesis can be thought of as a pipelined process. First the data is collected from the ECoG electrodes, then the data is pre-processed via signal processing techniques and finally the data is clustered via unsupervised learning techniques. For both the pre-processing and the clustering steps, different techniques are applied and then compared against one another. The focus of this thesis is to evaluate clustering techniques when applied to neural data. For the pre-processing step, two types of bandpass filters, a Butterworth Filter and a Chebyshev Filter were applied. For the clustering step three techniques were applied to the data, K-means Clustering, Spectral Clustering and Self-Tuning Spectral Clustering. We conclude that for pre-processing the results from both filters are very similar and thus either filter is sufficient. For clustering we conclude that K- means has the lowest amount of overlap between clusters. K-means is also the most time-efficient of the three techniques and is thus the ideal choice for this application.2016-10-27T00:00:00

    Multislice Modularity Optimization in Community Detection and Image Segmentation

    Full text link
    Because networks can be used to represent many complex systems, they have attracted considerable attention in physics, computer science, sociology, and many other disciplines. One of the most important areas of network science is the algorithmic detection of cohesive groups (i.e., "communities") of nodes. In this paper, we algorithmically detect communities in social networks and image data by optimizing multislice modularity. A key advantage of modularity optimization is that it does not require prior knowledge of the number or sizes of communities, and it is capable of finding network partitions that are composed of communities of different sizes. By optimizing multislice modularity and subsequently calculating diagnostics on the resulting network partitions, it is thereby possible to obtain information about network structure across multiple system scales. We illustrate this method on data from both social networks and images, and we find that optimization of multislice modularity performs well on these two tasks without the need for extensive problem-specific adaptation. However, improving the computational speed of this method remains a challenging open problem.Comment: 3 pages, 2 figures, to appear in IEEE International Conference on Data Mining PhD forum conference proceeding
    • …
    corecore