20 research outputs found

    Kinect depth recovery via the cooperative profit random forest algorithm

    Get PDF

    Distant Transfer Learning via Deep Random Walk

    Full text link
    Transfer learning, which is to improve the learning performance in the target domain by leveraging useful knowledge from the source domain, often requires that those two domains are very close, which limits its application scope. Recently, distant transfer learning has been studied to transfer knowledge between two distant or even totally unrelated domains via auxiliary domains that are usually unlabeled as a bridge in the spirit of human transitive inference that it is possible to connect two completely unrelated concepts together through gradual knowledge transfer. In this paper, we study distant transfer learning by proposing a DeEp Random Walk basEd distaNt Transfer (DERWENT) method. Different from existing distant transfer learning models that implicitly identify the path of knowledge transfer between the source and target instances through auxiliary instances, the proposed DERWENT model can explicitly learn such paths via the deep random walk technique. Specifically, based on sequences identified by the random walk technique on a data graph where source and target data have no direct edges, the proposed DERWENT model enforces adjacent data points in a squence to be similar, makes the ending data point be represented by other data points in the same sequence, and considers weighted training losses of source data. Empirical studies on several benchmark datasets demonstrate that the proposed DERWENT algorithm yields the state-of-the-art performance

    Joint bilateral filtering and spectral similarity-based sparse representation: A generic framework for effective feature extraction and data classification in hyperspectral imaging

    Get PDF
    Classification of hyperspectral images (HSI) has been a challenging problem under active investigation for years especially due to the extremely high data dimensionality and limited number of samples available for training. It is found that hyperspectral image classification can be generally improved only if the feature extraction technique and the classifier are both addressed. In this paper, a novel classification framework for hyperspectral images based on the joint bilateral filter and sparse representation classification (SRC) is proposed. By employing the first principal component as the guidance image for the joint bilateral filter, spatial features can be extracted with minimum edge blurring thus improving the quality of the band-to-band images. For this reason, the performance of the joint bilateral filter has shown better than that of the conventional bilateral filter in this work. In addition, the spectral similarity-based joint SRC (SS-JSRC) is proposed to overcome the weakness of the traditional JSRC method. By combining the joint bilateral filtering and SS-JSRC together, the superiority of the proposed classification framework is demonstrated with respect to several state-of-the-art spectral-spatial classification approaches commonly employed in the HSI community, with better classification accuracy and Kappa coefficient achieved

    Multiscale spatial-spectral convolutional network with image-based framework for hyperspectral imagery classification.

    Get PDF
    Jointly using spatial and spectral information has been widely applied to hyperspectral image (HSI) classification. Especially, convolutional neural networks (CNN) have gained attention in recent years due to their detailed representation of features. However, most of CNN-based HSI classification methods mainly use patches as input classifier. This limits the range of use for spatial neighbor information and reduces processing efficiency in training and testing. To overcome this problem, we propose an image-based classification framework that is efficient and straight forward. Based on this framework, we propose a multiscale spatial-spectral CNN for HSIs (HyMSCN) to integrate both multiple receptive fields fused features and multiscale spatial features at different levels. The fused features are exploited using a lightweight block called the multiple receptive field feature block (MRFF), which contains various types of dilation convolution. By fusing multiple receptive field features and multiscale spatial features, the HyMSCN has comprehensive feature representation for classification. Experimental results from three real hyperspectral images prove the efficiency of the proposed framework. The proposed method also achieves superior performance for HSI classification
    corecore