8,109 research outputs found

    Self-Referential Noise and the Synthesis of Three-Dimensional Space

    Get PDF
    Generalising results from Godel and Chaitin in mathematics suggests that self-referential systems contain intrinsic randomness. We argue that this is relevant to modelling the universe and show how three-dimensional space may arise from a non-geometric order-disorder model driven by self-referential noise.Comment: Figure labels correcte

    Self-Referential Noise as a Fundamental Aspect of Reality

    Get PDF
    Noise is often used in the study of open systems, such as in classical Brownian motion and in Quantum Dynamics, to model the influence of the environment. However generalising results from G\"{o}del and Chaitin in mathematics suggests that systems that are sufficiently rich that self-referencing is possible contain intrinsic randomness. We argue that this is relevant to modelling the universe, even though it is by definition a closed system. We show how a three-dimensional process-space may arise, as a Prigogine dissipative structure, from a non-geometric order-disorder model driven by, what is termed, self-referential noise.Comment: 7 pages, Latex, 3 ps figures. Contribution to the 2nd International Conference on Unsolved Problems of Noise, Adelaide 199

    Smart Nanostructures and Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is a semantic information theory of reality in which space and quantum phenomena are emergent.Comment: LaTex,14 pages 1 eps file. To be published in BioMEMS and Smart Nanostructures, Proceedings of SPIE Conference #4590, ed. L. B. Kis

    Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.Comment: 16 pages, Latex, 1 eps figure fil

    Optimizing Associative Information Transfer within Content-addressable Memory

    Get PDF
    Original article can be found at: http://www.oldcitypublishing.com/IJUC/IJUC.htmlPeer reviewe

    The play's the thing

    Get PDF
    For very understandable reasons phenomenological approaches predominate in the field of sensory urbanism. This paper does not seek to add to that particular discourse. Rather it takes Rorty’s postmodernized Pragmatism as its starting point and develops a position on the role of multi-modal design representation in the design process as a means of admitting many voices and managing multidisciplinary collaboration. This paper will interrogate some of the concepts underpinning the Sensory Urbanism project to help define the scope of interest in multi-modal representations. It will then explore a range of techniques and approaches developed by artists and designers during the past fifty years or so and comment on how they might inform the question of multi-modal representation. In conclusion I will argue that we should develop a heterogeneous tool kit that adopts, adapts and re-invents existing methods because this will better serve our purposes during the exploratory phase(s) of any design project that deals with complexity
    • 

    corecore