23,800 research outputs found

    Emergence of Self-Organized Symbol-Based Communication \ud in Artificial Creatures

    Get PDF
    In this paper, we describe a digital scenario where we simulated the emergence of self-organized symbol-based communication among artificial creatures inhabiting a \ud virtual world of unpredictable predatory events. In our experiment, creatures are autonomous agents that learn symbolic relations in an unsupervised manner, with no explicit feedback, and are able to engage in dynamical and autonomous communicative interactions with other creatures, even simultaneously. In order to synthesize a behavioral ecology and infer the minimum organizational constraints for the design of our creatures, \ud we examined the well-studied case of communication in vervet monkeys. Our results show that the creatures, assuming the role of sign users and learners, behave collectively as a complex adaptive system, where self-organized communicative interactions play a \ud major role in the emergence of symbol-based communication. We also strive in this paper for a careful use of the theoretical concepts involved, including the concepts of symbol and emergence, and we make use of a multi-level model for explaining the emergence of symbols in semiotic systems as a basis for the interpretation of inter-level relationships in the semiotic processes we are studying

    The Emergence of Symbol-Based Communication in a Complex System of Artificial Creatures

    Get PDF
    We present here a digital scenario to simulate the emergence of self-organized symbol-based communication among artificial creatures inhabiting a virtual world of predatory events. In order to design the environment and creatures, we seek theoretical and empirical constraints from C.S.Peirce Semiotics and an ethological case study of communication among animals. Our results show that the creatures, assuming the role of sign users and learners, behave collectively as a complex system, where self-organization of communicative interactions plays a major role in the emergence of symbol-based communication. We also strive for a careful use of the theoretical concepts involved, including the concepts of symbol, communication, and emergence, and we use a multi-level model as a basis for the interpretation of inter-level relationships in the semiotic processes we are studying

    Distributed Hypothesis Testing, Attention Shifts and Transmitter Dynatmics During the Self-Organization of Brain Recognition Codes

    Full text link
    BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088

    A neural network model of adaptively timed reinforcement learning and hippocampal dynamics

    Full text link
    A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.Air Force Office of Scientific Research (90-0175, 90-0128); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-87-16960); Office of Naval Research (N00014-91-J-4100

    Letter to the Editor: Physiological Interpretation of the Self-Organizing Map Algorithm

    Full text link
    Air Force Office of Scientific Research (F49620-92-J-0499); Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900

    MarciaTesta: An Automatic Generator of Test Programs for Microprocessors' Data Caches

    Get PDF
    SBST (Software Based Self-Testing) is an effective solution for in-system testing of SoCs without any additional hardware requirement. SBST is particularly suited for embedded blocks with limited accessibility, such as cache memories. Several methodologies have been proposed to properly adapt existing March algorithms to test cache memories. Unfortunately they all leave the test engineers the task of manually coding them into the specific Instruction Set Architecture (ISA) of the target microprocessor. We propose an EDA tool for the automatic generation of assembly cache test program for a specific architectur

    Deterministic Dynamics and Chaos: Epistemology and Interdisciplinary Methodology

    Full text link
    We analyze, from a theoretical viewpoint, the bidirectional interdisciplinary relation between mathematics and psychology, focused on the mathematical theory of deterministic dynamical systems, and in particular, on the theory of chaos. On one hand, there is the direct classic relation: the application of mathematics to psychology. On the other hand, we propose the converse relation which consists in the formulation of new abstract mathematical problems appearing from processes and structures under research of psychology. The bidirectional multidisciplinary relation from-to pure mathematics, largely holds with the "hard" sciences, typically physics and astronomy. But it is rather new, from the social and human sciences, towards pure mathematics
    corecore