619 research outputs found

    Lagrangian spheres in Del Pezzo surfaces

    Full text link
    Lagrangian spheres in the symplectic Del Pezzo surfaces arising as blow-ups of the complex projective plane in 4 or fewer points are classified up to Lagrangian isotopy. Unlike the case of the 5-point blow-up, there is no Lagrangian knotting.Comment: 48 pages, 2 figures; referee's corrections and suggestions incorporated

    Global surfaces of section for Reeb flows in dimension three and beyond

    Full text link
    We survey some recent developments in the quest for global surfaces of section for Reeb flows in dimension three using methods from Symplectic Topology. We focus on applications to geometry, including existence of closed geodesics and sharp systolic inequalities. Applications to topology and celestial mechanics are also presented.Comment: 33 pages, 3 figures. This is an extended version of a paper written for Proceedings of the ICM, Rio 2018; in v3 we made minor additional corrections, updated references, added a reference to work of Lu on the Conley Conjectur

    Topological fluid mechanics of point vortex motions

    Full text link
    Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. The reduction of each system using its symmetries is described in detail. Restricting to three vortices with zero net circulation, each reduced system is described by a one degree of freedom Hamiltonian. The phase portrait of this reduced system is subdivided into regimes using the separatrix motions, and a braid representing the topology of all vortex motions in each regime is computed. This braid also describes the isotopy class of the advection homeomorphism induced by the vortex motion. The Thurston-Nielsen theory is then used to analyse these isotopy classes, and in certain cases strong conclusions about the dynamics of the advection can be made
    corecore