619 research outputs found
Lagrangian spheres in Del Pezzo surfaces
Lagrangian spheres in the symplectic Del Pezzo surfaces arising as blow-ups
of the complex projective plane in 4 or fewer points are classified up to
Lagrangian isotopy. Unlike the case of the 5-point blow-up, there is no
Lagrangian knotting.Comment: 48 pages, 2 figures; referee's corrections and suggestions
incorporated
Recommended from our members
Dimer models from mirror symmetry and quivering amoebae
Dimer models are 2-dimensional combinatorial systems that have been shown to encode the gauge groups, matter content and tree-level superpotential of the world-volume quiver gauge theories obtained by placing D3-branes at the tip of a singular toric Calabi-Yau cone. In particular the dimer graph is dual to the quiver graph. However, the string theoretic explanation of this was unclear. In this paper we use mirror symmetry to shed light on this: the dimer models live on a T^2 subspace of the T^3 fiber that is involved in mirror symmetry and is wrapped by D6-branes. These D6-branes are mirror to the D3-branes at the singular point, and geometrically encode the same quiver theory on their world-volume
Global surfaces of section for Reeb flows in dimension three and beyond
We survey some recent developments in the quest for global surfaces of
section for Reeb flows in dimension three using methods from Symplectic
Topology. We focus on applications to geometry, including existence of closed
geodesics and sharp systolic inequalities. Applications to topology and
celestial mechanics are also presented.Comment: 33 pages, 3 figures. This is an extended version of a paper written
for Proceedings of the ICM, Rio 2018; in v3 we made minor additional
corrections, updated references, added a reference to work of Lu on the
Conley Conjectur
Topological fluid mechanics of point vortex motions
Topological techniques are used to study the motions of systems of point
vortices in the infinite plane, in singly-periodic arrays, and in
doubly-periodic lattices. The reduction of each system using its symmetries is
described in detail. Restricting to three vortices with zero net circulation,
each reduced system is described by a one degree of freedom Hamiltonian. The
phase portrait of this reduced system is subdivided into regimes using the
separatrix motions, and a braid representing the topology of all vortex motions
in each regime is computed. This braid also describes the isotopy class of the
advection homeomorphism induced by the vortex motion. The Thurston-Nielsen
theory is then used to analyse these isotopy classes, and in certain cases
strong conclusions about the dynamics of the advection can be made
- …
