8,722 research outputs found

    Controlling Steering Angle for Cooperative Self-driving Vehicles utilizing CNN and LSTM-based Deep Networks

    Full text link
    A fundamental challenge in autonomous vehicles is adjusting the steering angle at different road conditions. Recent state-of-the-art solutions addressing this challenge include deep learning techniques as they provide end-to-end solution to predict steering angles directly from the raw input images with higher accuracy. Most of these works ignore the temporal dependencies between the image frames. In this paper, we tackle the problem of utilizing multiple sets of images shared between two autonomous vehicles to improve the accuracy of controlling the steering angle by considering the temporal dependencies between the image frames. This problem has not been studied in the literature widely. We present and study a new deep architecture to predict the steering angle automatically by using Long-Short-Term-Memory (LSTM) in our deep architecture. Our deep architecture is an end-to-end network that utilizes CNN, LSTM and fully connected (FC) layers and it uses both present and futures images (shared by a vehicle ahead via Vehicle-to-Vehicle (V2V) communication) as input to control the steering angle. Our model demonstrates the lowest error when compared to the other existing approaches in the literature.Comment: Accepted in IV 2019, 6 pages, 9 figure

    Real-to-Virtual Domain Unification for End-to-End Autonomous Driving

    Full text link
    In the spectrum of vision-based autonomous driving, vanilla end-to-end models are not interpretable and suboptimal in performance, while mediated perception models require additional intermediate representations such as segmentation masks or detection bounding boxes, whose annotation can be prohibitively expensive as we move to a larger scale. More critically, all prior works fail to deal with the notorious domain shift if we were to merge data collected from different sources, which greatly hinders the model generalization ability. In this work, we address the above limitations by taking advantage of virtual data collected from driving simulators, and present DU-drive, an unsupervised real-to-virtual domain unification framework for end-to-end autonomous driving. It first transforms real driving data to its less complex counterpart in the virtual domain and then predicts vehicle control commands from the generated virtual image. Our framework has three unique advantages: 1) it maps driving data collected from a variety of source distributions into a unified domain, effectively eliminating domain shift; 2) the learned virtual representation is simpler than the input real image and closer in form to the "minimum sufficient statistic" for the prediction task, which relieves the burden of the compression phase while optimizing the information bottleneck tradeoff and leads to superior prediction performance; 3) it takes advantage of annotated virtual data which is unlimited and free to obtain. Extensive experiments on two public driving datasets and two driving simulators demonstrate the performance superiority and interpretive capability of DU-drive

    Towards Practical Verification of Machine Learning: The Case of Computer Vision Systems

    Full text link
    Due to the increasing usage of machine learning (ML) techniques in security- and safety-critical domains, such as autonomous systems and medical diagnosis, ensuring correct behavior of ML systems, especially for different corner cases, is of growing importance. In this paper, we propose a generic framework for evaluating security and robustness of ML systems using different real-world safety properties. We further design, implement and evaluate VeriVis, a scalable methodology that can verify a diverse set of safety properties for state-of-the-art computer vision systems with only blackbox access. VeriVis leverage different input space reduction techniques for efficient verification of different safety properties. VeriVis is able to find thousands of safety violations in fifteen state-of-the-art computer vision systems including ten Deep Neural Networks (DNNs) such as Inception-v3 and Nvidia's Dave self-driving system with thousands of neurons as well as five commercial third-party vision APIs including Google vision and Clarifai for twelve different safety properties. Furthermore, VeriVis can successfully verify local safety properties, on average, for around 31.7% of the test images. VeriVis finds up to 64.8x more violations than existing gradient-based methods that, unlike VeriVis, cannot ensure non-existence of any violations. Finally, we show that retraining using the safety violations detected by VeriVis can reduce the average number of violations up to 60.2%.Comment: 16 pages, 11 tables, 11 figure

    Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars

    Full text link
    Event cameras are bio-inspired vision sensors that naturally capture the dynamics of a scene, filtering out redundant information. This paper presents a deep neural network approach that unlocks the potential of event cameras on a challenging motion-estimation task: prediction of a vehicle's steering angle. To make the best out of this sensor-algorithm combination, we adapt state-of-the-art convolutional architectures to the output of event sensors and extensively evaluate the performance of our approach on a publicly available large scale event-camera dataset (~1000 km). We present qualitative and quantitative explanations of why event cameras allow robust steering prediction even in cases where traditional cameras fail, e.g. challenging illumination conditions and fast motion. Finally, we demonstrate the advantages of leveraging transfer learning from traditional to event-based vision, and show that our approach outperforms state-of-the-art algorithms based on standard cameras.Comment: 9 pages, 8 figures, 6 tables. Video: https://youtu.be/_r_bsjkJTH
    • …
    corecore