5,844 research outputs found

    Self-Assembly of 4-sided Fractals in the Two-handed Tile Assembly Model

    Full text link
    We consider the self-assembly of fractals in one of the most well-studied models of tile based self-assembling systems known as the Two-handed Tile Assembly Model (2HAM). In particular, we focus our attention on a class of fractals called discrete self-similar fractals (a class of fractals that includes the discrete Sierpi\'nski carpet). We present a 2HAM system that finitely self-assembles the discrete Sierpi\'nski carpet with scale factor 1. Moreover, the 2HAM system that we give lends itself to being generalized and we describe how this system can be modified to obtain a 2HAM system that finitely self-assembles one of any fractal from an infinite set of fractals which we call 4-sided fractals. The 2HAM systems we give in this paper are the first examples of systems that finitely self-assemble discrete self-similar fractals at scale factor 1 in a purely growth model of self-assembly. Finally, we show that there exists a 3-sided fractal (which is not a tree fractal) that cannot be finitely self-assembled by any 2HAM system

    Self-assembly of the discrete Sierpinski carpet and related fractals

    Full text link
    It is well known that the discrete Sierpinski triangle can be defined as the nonzero residues modulo 2 of Pascal's triangle, and that from this definition one can easily construct a tileset with which the discrete Sierpinski triangle self-assembles in Winfree's tile assembly model. In this paper we introduce an infinite class of discrete self-similar fractals that are defined by the residues modulo a prime p of the entries in a two-dimensional matrix obtained from a simple recursive equation. We prove that every fractal in this class self-assembles using a uniformly constructed tileset. As a special case we show that the discrete Sierpinski carpet self-assembles using a set of 30 tiles

    Fractals, Randomization, Optimal Constructions, and Replication in Algorithmic Self-Assembly

    Get PDF
    The problem of the strict self-assembly of infinite fractals within tile self-assembly is considered. In particular, tile assembly algorithms are provided for the assembly of the discrete Sierpinski triangle and the discrete Sierpinski carpet. The robust random number generation problem in the abstract tile assembly model is introduced. First, it is shown this is possible for a robust fair coin flip within the aTAM, and that such systems guarantee a worst case O(1) space usage. This primary construction is accompanied with variants that show trade-offs in space complexity, initial seed size, temperature, tile complexity, bias, and extensibility. This work analyzes the number of tile types t, bins b, and stages necessary and sufficient to assemble n × n squares and scaled shapes in the staged tile assembly model. Further, this work shows how to design a universal shape replicator in a 2-HAM self-assembly system with both attractive and repulsive forces

    Self-Assembly of Infinite Structures

    Full text link
    We review some recent results related to the self-assembly of infinite structures in the Tile Assembly Model. These results include impossibility results, as well as novel tile assembly systems in which shapes and patterns that represent various notions of computation self-assemble. Several open questions are also presented and motivated

    Scaled tree fractals do not strictly self-assemble

    Full text link
    In this paper, we show that any scaled-up version of any discrete self-similar {\it tree} fractal does not strictly self-assemble, at any temperature, in Winfree's abstract Tile Assembly Model.Comment: 13 pages, 3 figures, Appeared in the Proceedings of UCNC-2014, pp 27-39; Unconventional Computation and Natural Computation - 13th International Conference, UCNC 2014, London, ON, Canada, July 14-18, 2014, Springer Lecture Notes in Computer Science ISBN 978-3-319-08122-
    • …
    corecore