2,574 research outputs found

    High-speed global shutter CMOS machine vision sensor with high dynamic range image acquisition and embedded intelligence

    Get PDF
    High-speed imagers are required for industrial applications, traffic monitoring, robotics and unmanned vehicles, moviemaking, etc. Many of these applications call also for large spatial resolution, high sensitivity and the ability to detect images with large intra-frame dynamic range. This paper reports a CIS intelligent digital image sensor with 5.2Mpixels which delivers 12-bit fully-corrected images at 250Fps. The new sensor embeds on-chip digital processing circuitry for a large variety of functions including: windowing; pixel binning; sub-sampling; combined windowing-binning-subsampling modes; fixed-pattern noise correction; fine gain and offset control; color processing, etc. These and other CIS functions are programmable through a simple four-wire serial port interface.Ministerio de Ciencia e Innovación IPT-2011-1625-43000

    Vision-Based Road Detection in Automotive Systems: A Real-Time Expectation-Driven Approach

    Full text link
    The main aim of this work is the development of a vision-based road detection system fast enough to cope with the difficult real-time constraints imposed by moving vehicle applications. The hardware platform, a special-purpose massively parallel system, has been chosen to minimize system production and operational costs. This paper presents a novel approach to expectation-driven low-level image segmentation, which can be mapped naturally onto mesh-connected massively parallel SIMD architectures capable of handling hierarchical data structures. The input image is assumed to contain a distorted version of a given template; a multiresolution stretching process is used to reshape the original template in accordance with the acquired image content, minimizing a potential function. The distorted template is the process output.Comment: See http://www.jair.org/ for any accompanying file

    Towards Real-Time Information Processing of Sensor Network Data using Computationally Efficient Multi-output Gaussian Processes

    No full text
    In this paper, we describe a novel, computationally efficient algorithm that facilitates the autonomous acquisition of readings from sensor networks (deciding when and which sensor to acquire readings from at any time), and which can, with minimal domain knowledge, perform a range of information processing tasks including modelling the accuracy of the sensor readings, predicting the value of missing sensor readings, and predicting how the monitored environmental variables will evolve into the future. Our motivating scenario is the need to provide situational awareness support to first responders at the scene of a large scale incident, and to this end, we describe a novel iterative formulation of a multi-output Gaussian process that can build and exploit a probabilistic model of the environmental variables being measured (including the correlations and delays that exist between them). We validate our approach using data collected from a network of weather sensors located on the south coast of England

    A parallel windowing approach to the Hough transform for line segment detection

    Get PDF
    In the wide range of image processing and computer vision problems, line segment detection has always been among the most critical headlines. Detection of primitives such as linear features and straight edges has diverse applications in many image understanding and perception tasks. The research presented in this dissertation is a contribution to the detection of straight-line segments by identifying the location of their endpoints within a two-dimensional digital image. The proposed method is based on a unique domain-crossing approach that takes both image and parameter domain information into consideration. First, the straight-line parameters, i.e. location and orientation, have been identified using an advanced Fourier-based Hough transform. As well as producing more accurate and robust detection of straight-lines, this method has been proven to have better efficiency in terms of computational time in comparison with the standard Hough transform. Second, for each straight-line a window-of-interest is designed in the image domain and the disturbance caused by the other neighbouring segments is removed to capture the Hough transform buttery of the target segment. In this way, for each straight-line a separate buttery is constructed. The boundary of the buttery wings are further smoothed and approximated by a curve fitting approach. Finally, segments endpoints were identified using buttery boundary points and the Hough transform peak. Experimental results on synthetic and real images have shown that the proposed method enjoys a superior performance compared with the existing similar representative works

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    corecore