778,460 research outputs found

    Methyl esters selectivity of transesterification reaction with homogenous alkaline catalyst to produce biodiesel in batch, plug flow, and continuous stirred tank reactors

    Get PDF
    Selectivity concept is essential in establishing the best operating conditions for attaining maximum production of the desired product. For complex reaction such as biodiesel fuel synthesis, kinetic studies of transesterification reaction have revealed the mechanism of the reaction and rate constants. The objectives of this research are to develop the kinetic parameters for determination of methyl esters and glycerol selectivity, evaluate the significance of the reverse reaction in transesterification reaction, and examine the influence of reaction characteristics (reaction temperature, methanol to oil molar ratio, and the amount of catalyst) on selectivity. For this study, published reaction rate constants of transesterification reaction were used to develop mathematical expressions for selectivities. In order to examine the base case and reversible transesterification, two calculation schemes (Case 1 and Case 2) were established. An enhanced selectivity was found in the base case of transesterification reaction. The selectivity was greatly improved at optimum reaction temperature (60 C), molar ratio (9 : 1), catalyst concentration (1.5 wt.%), and low free fatty acid feedstock. Further research might explore the application of selectivity for specifying reactor configurations

    Energetics of ion competition in the DEKA selectivity filter of neuronal sodium channels

    Get PDF
    The energetics of ionic selectivity in the neuronal sodium channels is studied. A simple model constructed for the selectivity filter of the channel is used. The selectivity filter of this channel type contains aspartate (D), glutamate (E), lysine (K), and alanine (A) residues (the DEKA locus). We use Grand Canonical Monte Carlo simulations to compute equilibrium binding selectivity in the selectivity filter and to obtain various terms of the excess chemical potential from a particle insertion procedure based on Widom's method. We show that K+^{+} ions in competition with Na+^{+} are efficiently excluded from the selectivity filter due to entropic hard sphere exclusion. The dielectric constant of protein has no effect on this selectivity. Ca2+^{2+} ions, on the other hand, are excluded from the filter due to a free energetic penalty which is enhanced by the low dielectric constant of protein.Comment: 14 pages, 7 figure

    Selectivity in binary fluid mixtures: static and dynamical properties

    Get PDF
    Selectivity of particles in a region of space can be achieved by applying external potentials to influence the particles in that region. We investigate static and dynamical properties of size selectivity in binary fluid mixtures of two particles sizes. We find that by applying an external potential that is attractive to both kinds of particles, due to crowding effects, this can lead to one species of particles being expelled from that region, whilst the other species is attracted into the region where the potential is applied. This selectivity of one species of particle over the other in a localized region of space depends on the density and composition of the fluid mixture. Applying an external potential that repels both kinds of particles leads to selectivity of the opposite species of particles to the selectivity with attractive potentials. We use equilibrium and dynamical density functional theory to describe and understand the static and dynamical properties of this striking phenomenon. Selectivity by some ion-channels is believed to be due to this effect.Comment: 11 pages, 9 figure

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure

    Highly Diastereo- and Enantioselective Allylboration of Aldehydes using alpha-Substituted Allyl/Crotyl Pinacol Boronic Esters via in Situ Generated Borinic Esters

    Get PDF
    Readily available, alpha-substituted allyl/crotyl pinacol boronic esters often give low E/Z selectivity (with Z favored) in reactions with aldehydes. We found that addition of nBuLi to the pinacol boronic ester followed by trapping of the alkoxide with TFAA leads to an intermediate allyl borinic ester which undergoes allylboration with very high E selectivity. The substrate scope includes primary to tertiary alkyl alpha-substituents, crotyl substrates, and the previously unreported beta-methallyl pinacol boronic esters. The latter give very high Z selectivity under standard conditions which is completely reversed to high E selectivity under the new conditions. Monitoring the reaction by B-11 NMR confirmed that the reaction proceeds through a borinic ester intermediate.</p

    Functional Organization of Visual Cortex in the Owl Monkey

    Get PDF
    In this study, we compared the organization of orientation preference in visual areas V1, V2, and V3. Within these visual areas, we also quantified the relationship between orientation preference and cytochrome oxidase (CO) staining patterns. V1 maps of orientation preference contained both pinwheels and linear zones. The location of CO blobs did not relate in a systematic way to maps of orientation; although, as in other primates, there were approximately twice as many pinwheels as CO blobs. V2 contained bands of high and low orientation selectivity. The bands of high orientation selectivity were organized into pinwheels and linear zones, but iso-orientation domains were twice as large as those in V1. Quantitative comparisons between bands containing high or low orientation selectivity and CO dark and light bands suggested that at least four functional compartments exist in V2, CO dense bands with either high or low orientation selectivity, and CO light bands with either high or low selectivity. We also demonstrated that two functional compartments exist in V3, with zones of high orientation selectivity corresponding to CO dense areas and zones of low orientation selectivity corresponding to CO pale areas. Together with previous findings, these results suggest that the modular organization of V1 is similar across primates and indeed across most mammals. V2 organization in owl monkeys also appears similar to that of other simians but different from that of prosimians and other mammals. Finally, V3 of owl monkeys shows a compartmental organization for orientation selectivity that remains to be demonstrated in other primates

    Role of fluctuations in a snug-fit mechanism of KcsA channel selectivity

    Full text link
    The KcsA potassium channel belongs to a class of K+ channels that is selective for K+ over Na+ at rates of K+ transport approaching the diffusion limit. This selectivity is explained thermodynamically in terms of favorable partitioning of K+ relative to Na+ in a narrow selectivity filter in the channel. One mechanism for selectivity based on the atomic structure of the KcsA channel invokes the size difference between K+ and Na+, and the molecular complementarity of the selectivity filter with the larger K+ ion. An alternative view holds that size-based selectivity is precluded because atomic structural fluctuations are greater than the size difference between these two ions. We examine these hypotheses by calculating the distribution of binding energies for Na+ and K+ in a simplified model of the selectivity filter of the KcsA channel. We find that Na+ binds strongly to the selectivity filter with a mean binding energy substantially lower than that for K+. The difference is comparable to the difference in hydration free energies of Na+ and K+ in bulk aqueous solution. Thus, the average filter binding energies do not discriminate Na+ from K+ when measured from the baseline of the difference in bulk hydration free energies. Instead, Na+/K+ discrimination can be attributed to scarcity of good binding configurations for Na+ compared to K+. That relative scarcity is quantified as enhanced binding energy fluctuations, and is consistent with predicted relative constriction of the filter by Na+.Comment: 8 pages, 6 figure

    Consistent and Flexible Selectivity Estimation for High-dimensional Data

    Full text link
    Selectivity estimation aims at estimating the number of database objects that satisfy a selection criterion. Answering this problem accurately and efficiently is essential to many applications, such as density estimation, outlier detection, query optimization, and data integration. The estimation problem is especially challenging for large-scale high-dimensional data due to the curse of dimensionality, the large variance of selectivity across different queries, and the need to make the estimator consistent (i.e., the selectivity is non-decreasing in the threshold). We propose a new deep learning-based model that learns a query-dependent piecewise linear function as selectivity estimator, which is flexible to fit the selectivity curve of any query object and threshold, while guaranteeing that the output is non-decreasing in the threshold. To improve the accuracy for large datasets, we propose to partition the dataset into multiple disjoint subsets and build a local model on each of them. We perform experiments on real datasets and show that the proposed model significantly outperforms state-of-the-art models in accuracy and is competitive in efficiency
    corecore