4,485 research outputs found

    PAPR reduction techniques in generalized inverse discrete fourier transform non-orthogonal frequency division multiplexing system

    Get PDF
    A promising system of Generalized Inverse Discrete Fourier Transform Non-Orthogonal Frequency Division Multiplexing (GIDFT n-OFDM) system can fulfil the requirement of supporting higher data rate in Fifth Generation (5G) technology. However, this system experience High Peak to Average Power Ratio (PAPR) due to massive number of subcarriers signal is transmitted. In this paper, three types of usual PAPR reduction techniques were applied in GIDFT n-OFDM system which are Clipping, Partial transmit Transform (PTS) and Selective Mapping (SLM). The system performance is compared and evaluated using Complementary Cumulative Distribution Function (CCDF) plot. Simulation results show that SLM technique give significant reduction of PAPR 9 dB of the original performance

    CI/OFDM Underwater Acoustic Communication System

    Get PDF

    Accelerated Imaging Techniques for Chemical Shift Magnetic Resonance Imaging

    Get PDF
    Chemical shift imaging is a method for the separation two or more chemical species. The cost of chemical shift encoding is increased acquisition time as multiple acquisitions are acquired at different echo times. Image acceleration techniques, typically parallel imaging, are often used to improve the spatial coverage and resolution. This thesis describes a new technique for estimating the signal to noise ratio for parallel imaging reconstructions and proposes new image reconstructions for accelerated chemical shift imaging using compressed sensing and/or parallel imaging for two applications: water-fat separation and metabolic imaging of hyperpolarized [1-13C] pyruvate. Spatially varying noise in parallel imaging reconstructions makes measurements of the signal to noise ratio, a commonly used metric for image for image quality, difficult. Existing approaches have limitations such as they are not applicable to all reconstructions, require significant computation time, or rely on repeated image acquisitions. A SNR estimation technique is proposed that does not exhibit these limitations. Water-fat imaging of highly undersampled datasets from the liver, calf, knee, and abdominal cavity are demonstrated using a customized IDEAL-SPGR pulse sequence and an integrated compressed sensing, parallel imaging, water-fat reconstruction. This method is shown to offer comparable image quality relative to fully sampled reference images for a range of acceleration factors. At high acceleration factors, this technique is shown to offer improved image quality when compared to the current standard of parallel imaging. Accelerated chemical shift imaging was demonstrated for metabolic of hyperpolarized [1-13C] pyruvate. Pyruvate, lactate, alanine, and bicarbonate images were reconstructed from undersampled datasets. Phantoms were used to validate this technique while retrospectively and prospectively accelerated 3D in vivo datasets were used to demonstrate. Alternatively, acceleration was also achieved through the use of a high performance magnetic field gradient set. This thesis addresses the inherently slow acquisition times of chemical shift imaging by examining the role compressed sensing and parallel imaging can be play in chemical shift imaging. An approach to SNR assessment for parallel imaging reconstruction is proposed and approaches to accelerated chemical shift imaging are described for applications in water-fat imaging and metabolic imaging of hyperpolarized [1-13C] pyruvate

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Learning midlevel image features for natural scene and texture classification

    Get PDF
    This paper deals with coding of natural scenes in order to extract semantic information. We present a new scheme to project natural scenes onto a basis in which each dimension encodes statistically independent information. Basis extraction is performed by independent component analysis (ICA) applied to image patches culled from natural scenes. The study of the resulting coding units (coding filters) extracted from well-chosen categories of images shows that they adapt and respond selectively to discriminant features in natural scenes. Given this basis, we define global and local image signatures relying on the maximal activity of filters on the input image. Locally, the construction of the signature takes into account the spatial distribution of the maximal responses within the image. We propose a criterion to reduce the size of the space of representation for faster computation. The proposed approach is tested in the context of texture classification (111 classes), as well as natural scenes classification (11 categories, 2037 images). Using a common protocol, the other commonly used descriptors have at most 47.7% accuracy on average while our method obtains performances of up to 63.8%. We show that this advantage does not depend on the size of the signature and demonstrate the efficiency of the proposed criterion to select ICA filters and reduce the dimensio

    Material-Point Analysis of Large-Strain Problems:modelling of landslides

    Get PDF

    Laminar dynamics of high amplitude beta bursts in human motor cortex

    Get PDF
    Motor cortical activity in the beta frequency range is one of the strongest and most studied movement-related neural signals. At the single trial level, beta band activity is often characterized by transient, high amplitude, bursting events rather than slowly modulating oscillations. The timing of these bursting events is tightly linked to behavior, suggesting a more dynamic functional role for beta activity than previously believed. However, the neural mechanisms underlying beta bursts in sensorimotor circuits are poorly understood. To address this, we here leverage and extend recent developments in high precision MEG for temporally resolved laminar analysis of burst activity, combined with a neocortical circuit model that simulates the biophysical generators of the electrical currents which drive beta bursts. This approach pinpoints the generation of beta bursts in human motor cortex to distinct excitatory synaptic inputs to deep and superficial cortical layers, which drive current flow in opposite directions. These laminar dynamics of beta bursts in motor cortex align with prior invasive animal recordings within the somatosensory cortex, and suggest a conserved mechanism for somatosensory and motor cortical beta bursts. More generally, we demonstrate the ability for uncovering the laminar dynamics of event-related neural signals in human non-invasive recordings. This provides important constraints to theories about the functional role of burst activity for movement control in health and disease, and crucial links between macro-scale phenomena measured in humans and micro-circuit activity recorded from animal models
    corecore