97,200 research outputs found

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Identification of a selective G1-phase benzimidazolone inhibitor by a senescence-targeted virtual screen using artificial neural networks

    Get PDF
    Cellular senescence is a barrier to tumorigenesis in normal cells and tumour cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required. Here we report a machine learning-based in silico screen to identify potential senescence agonists. We built profiles of differentially affected biological process networks from expression data obtained under induced telomere dysfunction conditions in colorectal cancer cells and matched these to a panel of 17 protein targets with confirmatory screening data in PubChem. We trained a neural network using 3517 compounds identified as active or inactive against these targets. The resulting classification model was used to screen a virtual library of ~2M lead-like compounds. 147 virtual hits were acquired for validation in growth inhibition and senescence-associated β-galactosidase (SA-β-gal) assays. Among the found hits a benzimidazolone compound, CB-20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and selectively induced SA-β-gal activity in the entire treated cell population without cytotoxicity or apoptosis induction. Growth suppression was mediated by G1 blockade involving increased p21 expression and suppressed cyclin B1, CDK1 and CDC25C. Additionally, the compound inhibited growth of multicellular spheroids and caused severe retardation of population kinetics in long term treatments. Preliminary structure-activity and structure clustering analyses are reported and expression analysis of CB-20903630 against other cell cycle suppressor compounds suggested a PI3K/AKT-inhibitor-like profile in normal cells, with different pathways affected in cancer cells

    Sub 1GHz M2M communications standardization: The advancement in white space utilization for enhancing the energy efficiency

    Get PDF
    Energy efficiency of machine to machine (M2M) communications terminals is one of the major design goals of M2M networks, resulting from anticipated over 50 billion M2M communications devices to be deployed into the networks by 2020 [1]. The stakeholders in the M2M communications have observed that it will be environmental and economic catastrophic to deploy M2M communications devices without solving the energy inefficiencies associated with wireless devices that are expected to be used for M2M communications. In view of the aforementioned energy challenge, sub 1GHz spectra have provided enormous opportunities that can be energy efficient, cost effective and coverage efficiency which can be utilized for M2M communications. This work will evaluate the energy efficiency benefits of optimized Sub 1GHz spectra for M2M communications
    corecore