741 research outputs found

    Symbol-Level Selective Full-Duplex Relaying with Power and Location Optimization

    Get PDF
    In this paper, a symbol-level selective transmission for full-duplex (FD) relaying networks is proposed to mitigate error propagation effects and improve system spectral efficiency. The idea is to allow the FD relay node to predict the correctly decoded symbols of each frame, based on the generalized square deviation method, and discard the erroneously decoded symbols, resulting in fewer errors being forwarded to the destination node. Using the capability for simultaneous transmission and reception at the FD relay node, our proposed strategy can improve the transmission efficiency without extra cost of signalling overhead. In addition, targeting on the derived expression for outage probability, we compare it with half-duplex (HD) relaying case, and provide the transmission power and relay location optimization strategy to further enhance system performance. The results show that our proposed scheme outperforms the classic relaying protocols, such as cyclic redundancy check based selective decode-and-forward (S-DF) relaying and threshold based S-DF relaying in terms of outage probability and bit-error-rate. Moreover, the performances with optimal power allocation is better than that with equal power allocation, especially when the FD relay node encounters strong self-interference and/or it is close to the destination node.Comment: 34 pages (single-column), 14 figures, 2 tables, accepted pape

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Adaptive relaying protocol multiple-input multiple-output orthogonal frequency division multiplexing systems

    Get PDF
    In wireless broadband communications, orthogonal frequency division multiplexing (OFDM) has been adopted as a promising technique to mitigate multi-path fading and provide high spectral efficiency. In addition, cooperative communication can explore spatial diversity where several users or nodes share their resources and cooperate through distributed transmission. The concatenation of the OFDM technique with relaying systems can enhance the overall performance in terms of spectral efficiency and improve robustness against the detrimental effects of fading. Hybrid relay selection is proposed to overcome the drawbacks of conventional forwarding schemes. However, exciting hybrid relay protocols may suffer some limitations when used for transmission over frequency-selective channels. The combination of cooperative protocols with OFDM systems has been extensively utilized in current wireless networks, and have become a promising solution for future high data rate broadband communication systems including 3D video transmission. This thesis covers two areas of high data rate networks. In the first part, several techniques using cooperative OFDM systems are presented including relay selection, space time block codes, resource allocation and adaptive bit and power allocation to introduce diversity. Four (4) selective OFDM relaying schemes are studied over wireless networks; selective OFDM; selective OFDMA; selective block OFDM and selective unequal block OFDM. The closed-form expression of these schemes is derived. By exploiting the broadcast nature, it is demonstrated that spatial diversity can be improved. The upper bound of outage probability for the protocols is derived. A new strategy for hybrid relay selection is proposed to improve the system performance by removing the sub-carriers that experience deep fading. The per subcarrier basis selection is considered with respect to the predefined threshold signal-to-noise ratio. The closed-form expressions of the proposed protocol in terms of bit error probability and outage probability are derived and compared with conventional hybrid relay selection. Adaptive bit and power allocation is also discussed to improve the system performance. Distributed space frequency coding applied to hybrid relay selection to obtain full spatial and full data rate transmission is explored. Two strategies, single cluster and multiple clusters, are considered for the Alamouti code at the destination by using a hybrid relay protocol. The power allocation with and without sub-carrier pairing is also investigated to mitigate the effect of multipath error propagation in frequency-selective channels. The second part of this thesis investigates the application of cooperative OFDM systems to high data rate transmission. Recently, there has been growing attention paid to 3D video transmission over broadband wireless channels. Two strategies for relay selection hybrid relay selection and first best second best are proposed to implement unequal error protection in the physical layer over error prone channels. The closed-form expressions of bit error probability and outage probability for both strategies are examined. The peak signal-to-noise ratio is presented to show the quality of reconstruction of the left and right views

    Multihop Diversity in Wideband OFDM Systems: The Impact of Spatial Reuse and Frequency Selectivity

    Full text link
    The goal of this paper is to establish which practical routing schemes for wireless networks are most suitable for wideband systems in the power-limited regime, which is, for example, a practically relevant mode of operation for the analysis of ultrawideband (UWB) mesh networks. For this purpose, we study the tradeoff between energy efficiency and spectral efficiency (known as the power-bandwidth tradeoff) in a wideband linear multihop network in which transmissions employ orthogonal frequency-division multiplexing (OFDM) modulation and are affected by quasi-static, frequency-selective fading. Considering open-loop (fixed-rate) and closed-loop (rate-adaptive) multihop relaying techniques, we characterize the impact of routing with spatial reuse on the statistical properties of the end-to-end conditional mutual information (conditioned on the specific values of the channel fading parameters and therefore treated as a random variable) and on the energy and spectral efficiency measures of the wideband regime. Our analysis particularly deals with the convergence of these end-to-end performance measures in the case of large number of hops, i.e., the phenomenon first observed in \cite{Oyman06b} and named as ``multihop diversity''. Our results demonstrate the realizability of the multihop diversity advantages in the case of routing with spatial reuse for wideband OFDM systems under wireless channel effects such as path-loss and quasi-static frequency-selective multipath fading.Comment: 6 pages, to be published in Proc. 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications (IEEE ISSSTA'08), Bologna, Ital

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter
    corecore