2,444,220 research outputs found

    A Strategic Selection Procedure

    Get PDF
    A decision maker (DM) wishes to select a competent candidate to fill a position. However, since the wage and task of the position is predetermined, the DM cannot use contract as a screening device. This paper formulates the problem as a class of selection problem and derives the optimal selection procedure. The key element of our selection procedure is voluntary testing. That is, unlike statistical selection procedures, the signal generating process is endogenous. Then, the optimal selection rule takes into account not only the test performances but also signaling element of the test. We analyze the selection procedure as a signaling game and derive the optimal selection rule. Moreover, the optimal size of candidate pool and the selection efficiency are also analyzed. It is shown that, by making the test voluntary, the selection efficiency can be dramatically improved.Signaling, Screening, Selection problem, Selection procedure, Testing

    Robust variable selection in partially varying coefficient single-index model

    Get PDF
    By combining basis function approximations and smoothly clipped absolute deviation (SCAD) penalty, this paper proposes a robust variable selection procedure for a partially varying coefficient single-index model based on modal regression. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. Furthermore, we also discuss the bandwidth selection and propose a modified expectation-maximization (EM)-type algorithm for the proposed estimation procedure. The finite sample properties of the proposed estimators are illustrated by some simulation examples.The research of Zhu is partially supported by National Natural Science Foundation of China (NNSFC) under Grants 71171075, 71221001 and 71031004. The research of Yu is supported by NNSFC under Grant 11261048

    Fixed effects selection in the linear mixed-effects model using adaptive ridge procedure for L0 penalty performance

    Full text link
    This paper is concerned with the selection of fixed effects along with the estimation of fixed effects, random effects and variance components in the linear mixed-effects model. We introduce a selection procedure based on an adaptive ridge (AR) penalty of the profiled likelihood, where the covariance matrix of the random effects is Cholesky factorized. This selection procedure is intended to both low and high-dimensional settings where the number of fixed effects is allowed to grow exponentially with the total sample size, yielding technical difficulties due to the non-convex optimization problem induced by L0 penalties. Through extensive simulation studies, the procedure is compared to the LASSO selection and appears to enjoy the model selection consistency as well as the estimation consistency

    A niching memetic algorithm for simultaneous clustering and feature selection

    Get PDF
    Clustering is inherently a difficult task, and is made even more difficult when the selection of relevant features is also an issue. In this paper we propose an approach for simultaneous clustering and feature selection using a niching memetic algorithm. Our approach (which we call NMA_CFS) makes feature selection an integral part of the global clustering search procedure and attempts to overcome the problem of identifying less promising locally optimal solutions in both clustering and feature selection, without making any a priori assumption about the number of clusters. Within the NMA_CFS procedure, a variable composite representation is devised to encode both feature selection and cluster centers with different numbers of clusters. Further, local search operations are introduced to refine feature selection and cluster centers encoded in the chromosomes. Finally, a niching method is integrated to preserve the population diversity and prevent premature convergence. In an experimental evaluation we demonstrate the effectiveness of the proposed approach and compare it with other related approaches, using both synthetic and real data
    corecore