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A Strategic Selection Procedure

Toru Suzuki�

March 8, 2011

Abstract

A decision maker (DM) wishes to select a competent candidate to �ll a position.
However, since the wage and task of the position is predetermined, the DM cannot use
contract as a screening device. This paper formulates the problem as a class of selection
problem and derives the optimal selection procedure. The key element of our selection
procedure is voluntary testing. That is, unlike statistical selection procedures, the
signal generating process is endogenous. Then, the optimal selection rule takes into
account not only the test performances but also signaling element of the test. We
analyze the selection procedure as a signaling game and derive the optimal selection
rule. Moreover, the optimal size of candidate pool and the selection e¢ ciency are also
analyzed. It is shown that, by making the test voluntary, the selection e¢ ciency can
be dramatically improved.
Keywords. Signaling, Screening, Selection problem, Selection procedure, Testing
JEL Code. D82
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1 Introduction

Consider a situation in which a decision maker (DM) wishes to select a quali�ed candidate

to �ll a position. For example, a �rm wishes to select a worker who has a su¢ cient ability

to perform certain task. A university wishes to fund students whose academic ability is

higher than certain level. The standard approach for such problem is screening, that is,

the DM designs a contract which satis�es incentive compatible condition in order to sort

out quali�ed candidates. However, it is often the case that there is little room to design

contract. For example, in many public positions, the task and wage are predetermined. In

fellowship/scholarship positions, there is often no task and the amount of the scholarship is

already �xed. The purpose of this paper is to propose a simple selection procedure for such

environments.

We formulate the problem as a class of selection problem in mathematical statistics

literature, e.g., Lehmann (1961). Selection problem is to select a population which posses

certain unobservable characteristics from a grand population. In other words, the purpose

of selection is to �nd "quali�ed" candidates. Then, selection procedure is de�ned to be a

selection rule which maximizes the objective of the DM given available information. This

paper extends the standard selection procedure to a strategic environment. In the standard

selection procedure, all available information about candidates is exogenously given. On the

other hand, in our selection procedure, since each candidate chooses whether to take a test,

the signal generating process is endogenous. Then, since the action of candidates can reveal

private information, the DM can utilize information not only from test performances but

also from their actions.

We analyze the selection procedure as a signaling game between candidates and the DM.

Given private information, each candidate decides whether to take the test. Then, the DM

selects one candidate after observing the test results. The test technology is assumed to be

monotonic, that is, higher type tends to perform better. Then, the optimal selection rule

is the DM�s equilibrium strategy. We focus on "testing equilibrium," which is symmetric

perfect Bayesian equilibrium where some types take the test with strictly positive probability.

In Section 3, it is shown that there exists unique testing equilibrium if the cost of select-

ing unquali�ed types, i.e., "false positive," is su¢ ciently high for the DM. More intuitively,
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whenever the DM prefers "selecting no candidate" to "a random choice" given the prior prob-

ability, there exists a unique testing equilibrium. In the testing equilibrium, each candidate

takes the test only if his type is higher than a cuto¤ type. Hence, whenever one candidate

takes the test in equilibrium, his type is higher than the cuto¤ type. Then, based on the

equilibrium posterior belief, the optimal selection rule is derived. We show that the optimal

selection rule is based on both relative and absolute evaluation of the test performances.

In our selection procedure, the size of candidate pool a¤ects the level of information

revelation in the testing equilibrium and determines the selection e¢ ciency. Hence, the DM

may wish to choose not only the selection rule but also the size of candidate pool. For

instance, the DM can increase the size of candidate pool by notifying the opportunity to

larger population. If the size of candidate pool is too large, the DM can reduce the size by a

fair lottery. Section 4 de�nes optimal candidate pool to be the size of candidate pool which

maximizes the DM�s interest. First, we analyze the case where the DM cannot control the

cost of test for candidates. Then, we provide the upper and lower bounds of the optimal size.

Second, we analyze the case in which the DM can control the cost of test for candidates. In

this case, we can easily pin down the optimal size. It is shown that the optimal size only

depends on the DM�s cost of testing and the distribution of types.

In Section 5, we de�ne selection power to be the probability of "true positives," i.e., the

selected candidate is one of quali�ed types. Then, given a selection power, we analyze the

minimum size of candidate pool which attains the selection power. It is shown that, whenever

the DM�s cost of "false positives" is su¢ ciently high, our selection procedure can attain any

level of selection power with a �nite number of candidates. Moreover, we compare our

selection procedure with a purely statistical selection procedure, i.e., the signal generating

process is exogenous. It is shown that the minimum size of candidate pool to attain the

certain selection power is always smaller in our selection procedure. Moreover, we show

that, whenever the DM�s cost of "false positive" is su¢ ciently high, the selection procedure

with exogenous signals has no selection power. On the other hand, with the same cost of

"false positive," our procedure can attain any level of selection power as long as the size of

candidate pool is su¢ ciently large.

Related literature. The formulation of selection problem is based on Lehmann (1961). His
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paper provides the optimum properties of selection procedure for non-strategic environment,

e.g., selection of products, plants etc. Our paper is an extension of the selection procedure

to a strategic environment.

Testing is already incorporated to some earlier screening models, e.g., Guasch and Weiss

(1980) and Nalebu¤ and Scharfstein (1987). However, in their models, quali�ed candidates

can be sorted out by the wage schedule which depends on the test result. Hence, the spirit of

their models is di¤erent from that of ours. Unlike their models and other screening models,

our paper focuses on the environment in which there is little room to design contract, i.e.,

predetermined wage and task. Hence, the contribution of our paper is to provide a simple

selection procedure for such non-standard screening environment. La¤ont and Martimort

(2002) discuss the importance of incentive design for economic environments where the set

of feasible contracts is limited.

We analyze the selection procedure as a signaling game in which the DM observes not

only action but also the test result. Since the payo¤ function is the same across all types in

our signaling game, the standard single crossing condition is violated. However, since the test

performance statistically re�ects private information and the candidate has to outperform

other candidates to be selected, the test becomes e¤ective signaling device as competition

among candidates becomes stronger. That is, when the number of candidates is su¢ ciently

large, each candidate takes the test only if his type is higher than a certain level. On the

other hand, when the number of candidates is small, the test is not e¤ective signaling device

and all equilibria can be pooling.

Finally, in our model, since candidates compete to get an opportunity, there is some

similarity to contest models, e.g., Siegel (2009). There are some contest models which study

the selection e¢ ciency of contest, e.g., Hvide and Kristiansen (2003). However, the spirit of

our model is di¤erent from contest models. In contest models, the main interest is in the

e¤ort level of contestants given a �xed "selection rule," i.e., contest. On the other hand, in

our model, the main interest is in the optimal selection rule to sort out quali�ed types. That

is, the selection rule is chosen by the DM to select �quali�ed�candidates. Moreover, since

the selection rule is not designed to induce higher e¤ort, our paper is also di¤erent from

optimal contest literatures.

3
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2 Model

First, we de�ne selection problem based on Lehmann (1961). Let I = f1; 2; ::; Ig be a set of
candidates and � = [�min; �max] be a set of types. Given �

� 2 int(�); the set of quali�ed
types is de�ned to be f� 2 �j� � ��g. For each candidate, the type is private information
and independently drawn from an absolutely continuous probability distribution G(�) with

supp(g) = �: Then, a selection problem is hI;�; ��; K; gi in which a decision maker
(DM) selects at most K candidates so that the selected candidates are quali�ed types. For

simplicity, we focus on the case K = 1:1

The payo¤ function of the DM is as follows. If the DM selects candidate i and �i � ��;
then the DM�s payo¤ is 1. On the other hand, if the DM selects candidate i and �i < �

�,

then the DM�s payo¤ is �� where � > 0 is the cost of "false positives." For example, if

unquali�ed types can produce nothing, � may be the wage the �rm pays. If unquali�ed

types can damage the �rm, � may be the damage and the wage. Finally, the DM�s payo¤ is

0 if he rejects all candidates: All candidates wish to be selected and the position has common

value w > 0 which can be interpreted as wage for job candidates and scholarship for students.

The DM applies a selection procedure hX;Z; f; ri which consists of two stages. The
�rst stage is a signal generating process. Concretely, each candidate decides whether to

take a test. If candidate i takes the test, the performance xi 2 X = [x; �x] is drawn from

probability distribution F (:j�i): Then, let Z = X [ f?g be the set of signals that each
candidate can generate and zi 2 Z denote the signal of candidate i: Concretely, if candidate
i takes the test, zi = xi and, if candidate i does not take the test, zi = ?: The second stage
is a selection process. Given available information (z1; z2; ::; zI) 2 ZI ; the DM selects one

candidate or rejects all based on a selection rule r(z1; z2; ::; zI) where r : ZI ! I [f?g:
We assume that the test technology f satis�es the following two assumptions.

Assumption 1. supp(f(:j�)) = X for any �.

Assumption 2. f(:j�0)
f(:j�) is strictly increasing in x if �

0 > �:

Assumption 1 says that, there is no test performance which perfectly reveals the type.

1For K > 1; most of results are qualitatively preserved .
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Assumption 2 states that the test technology f has the monotone likelihood ratio (MLR)

property.

The test costs c 2 (0; w) for any candidate. When a candidate does not take the test, his
payo¤ is w if he is selected and 0 if he is not selected. When a candidate takes the test, his

payo¤ is w� c if he is selected and �c if he is not selected. Note that the payo¤ function is
the same across types.

It is assumed that each candidate takes his action to maximize his expected payo¤ and

the DM selects a candidate to maximize his expected payo¤. Then, we analyze the selection

procedure as a signaling game in which candidates are the senders and the DM is the receiver.

Let Ai = f0; 1g be candidate i�s set of actions where 0 denotes "not taking the test" and 1
denotes "taking the test." Then, candidate i�s strategy is a mapping si : � ! Ai: On the

other hand, the DM�s strategy is selection rule r(z1; z2; ::; zI):We de�ne testing equilibrium

to be perfect Bayesian equilibrium in which (i) the strategy pro�le of candidates is symmetric,

i.e., si(�i) = sj(�j) if �i = �j (ii) the probability that some candidates take the test is strictly

positive, i.e.,
R
f�js(�)=1g g(�)d� > 0: Then, this paper focuses on testing equilibrium.

The rest of this paper investigates the followings: (i) the selection rule which maximizes

the DM�s interest (ii) the size of candidate pool which maximizes the DM�s interest (iii) the

selection e¢ ciency of the procedure.

3 Optimal selection rule

Since we analyze the selection procedure as a signaling game, the optimal selection rule is

the DM�s equilibrium strategy. This section analyzes testing equilibrium and characterizes

the optimal selection rule given size of candidate pool I:

The following lemma provides the properties of the DM�s optimal reaction given candi-

dates�strategy pro�le s.

Lemma 1. Given candidates�strategy pro�le s, there exists x(s) 2 X such that

(i) if r(z1; z2; ::; zI) = i and ai = 1; then xi � xj for any j and xi � x(s):
(ii) if r(z1; z2; ::; zI) = ? and aj = 1; then xj < x(s):

5
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Proof. Let �(s) = f�js(�) = 1g and �s(�ijzi) be the posterior probability density of �i
given candidate i�s test result zi and strategy pro�le s: That is,

�s(�ijzi) =

8><>:
f(xj�i)g(�i)R

�0
i
2�(s) f(xj�

0
i)g(�

0
i)d�

0
i
if zi = xi

g(�i)R
�0
i
2���(s) g(�

0
i)d�

0
i
if zi = ?

Then, when the DM chooses i; the expected payo¤ of the DM given zi isZ
�i���

�s(�ijzi)d�i � �
Z
�i<�

�
�s(�ijzi)d�i

Thus, whenever candidate i is selected, two conditions have to be satis�ed. First, the

DM�s expected payo¤ from candidate i has to be higher than that from other candidates.

That is, Z
�i���

�s(�ijzi)d�i � �
Z
�i<�

�
�s(�ijzi)d�i

�
Z
�j���

�s(�jjzj)d�j � �
Z
�j<�

�
�s(�jjzj)d�j:

for all j: Then, by the MLR property, xi � xj: This proves the �rst part of (i).
Second, the expected payo¤ of the DM from selecting i has to be positive. That is,Z

�i���
�s(�ijzi)d�i � �

Z
�i<�

�
�s(�ijzi)d�i

Observe that, by theMLR property,
R
�i��� �s(�ijxi)d�i is increasing in xi and

R
�i<�

� �s(�ijxi)d�i
is decreasing in xi: Then, let

x(s) =

8>>><>>>:
ex if there exists R

�i��� �s(�ijex)d�i = � R�i<�� �s(�ijex)d�i
x if

R
�i��� �s(�ijxi)d�i > �

R
�i<�

� �s(�ijxi)d�i for all xi
�x if

R
�i��� �s(�ijxi)d�i < �

R
�i<�

� �s(�ijxi)d�i for all xi

:

Hence, the expected payo¤ from selecting candidate i is positive if and only if xi � x(s).
Q.E.D.

Remark. If K > 1; whenever a candidate is selected, his performance is at least as good

as K-th highest performance. On the other hand, x(s) is the same as that of K = 1:
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Now, we introduce a candidate�s strategy which plays a key role in this paper. A candi-

date�s strategy is �̂-cuto¤ strategy if

si(�) =

8<: 1 if �i > �̂

0 if �i < �̂

The next lemma claims that, in any testing equilibria, all candidates play a cuto¤strategy.

Lemma 2. Any testing equilibrium consists of a cuto¤ strategy pro�le.

Proof. Suppose not. Then, there exists �0 > �00 such that si(�
0) = 0 and si(�

00) = 1: Then,

let �(s) = f�js(�) = 1g and

H(xij�j; s) =

8<: F (xij�j) if �j 2 �(s)

1 if �j =2 �(s)
:

Then, since the distribution of types is independent, the probability that candidate i�s

performance xi is the highest among all candidates is

Pr(xi � xj;8jjs; I) =
 Z

�j

H(xij�j; s)dG(�j)
!I
:

Hence, by Lemma 1, the expected payo¤ of type � from the test given s and I isZ
xi�x(s)

wPr(xi � xj;8jjs; I)dF (xij�i)� c:

Then, by the MLR property,Z
xi�x(s)

wPr(xi � xj;8jjs; I)dF (xij�0i) >
Z
xi�x(s)

wPr(xi � xj;8jjs; I)dF (xij�00i ):

and type �0 has incentive to deviate, a contradiction. Q.E.D.

The next proposition states that whenever the cost of "false positive" is su¢ ciently high

for the DM, there exists a unique testing equilibrium for any I: On the other hand, even if

the cost of "false positive" is low, whenever the number of candidates is su¢ ciently large,

there exists a testing equilibrium.
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Proposition 1.

(i) If (1 + �)G(��) > 1, there exists a unique testing equilibrium for any I:

(ii) If (1 + �)G(��) � 1, testing equilibrium exists for su¢ ciently large I

Proof. By abusing notation, let

H(xij�j; �̂) =

8<: F (xij�j) if �j > �̂

1 if �j < �̂

Then, given �̂-cuto¤ strategy, the probability that candidate i�s performance xi is the

highest among all candidates is

Pr(xi � xj;8jj�̂; I) =
 Z

�j

H(xij�j; �̂)dG(�j)
!I
:

Moreover, let U(�̂j�̂; I; c) be the expected payo¤ from the test for candidate i with �i = �̂
given �̂-cuto¤ strategy pro�le, c and I. That is,

U(�̂j�̂; I; c) =
Z
xi�x(�̂)

wPr(xi � xj;8jj�̂; I)dF (xij�̂)� c

Then the proof consists of three claims.

Claim 1. U(�̂j�̂; I; c) is continuous and strictly increasing in �̂:
First, it is easy to see that Pr(xi � xj;8jj�̂; I) is continuous and strictly increasing in �̂:

Second, by abusing notation, let

x(�̂) =

8>>><>>>:
ex if there exists R

�i��� ��̂(�ijex)d�i = � R�i<�� ��̂(�ijex)d�i
x if

R
�i��� ��̂(�ijxi)d�i > �

R
�i<�

� ��̂(�ijxi)d�i for all xi
�x if

R
�i��� ��̂(�ijxi)d�i < �

R
�i<�

� ��̂(�ijxi)d�i for all xi

where

��̂(�ijzi) =

8><>:
f(xj�i)g(�i)R

�0
i
��̂ f(xj�

0
i)g(�

0
i)d�

0
i
if zi = xi

g(�i)R
�0
i
<�̂ g(�

0
i)d�

0
i
if zi = ?

Then, obviously,
R
�i��� ��̂(�ijx)d�i and

R
�i<�

� ��̂(�ijx)d�i are both continuous in �̂: More-
over, by the MLR property,

R
�i��� ��̂(�ijx)d�i is strictly increasing in �̂ and

R
�i<�

� ��̂(�ijx)d�i

8
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is strictly decreasing in �̂: Hence, x(�̂) is decreasing in �̂: Therefore, U(�̂j�̂; I; c) is continuous
and strictly increasing in �̂:

Claim 2. There exits a unique cuto¤ equilibrium if (1 + �)G(��) > 1.

Note that, as �̂ ! �max; the probability that some candidate takes the test goes to 0.

Hence, by choosing �̂ close to �max; we can make Pr(xi � xj;8jj�̂; I) arbitrarily close to 1.
Then, lim�̂!�max U(�̂j�̂; I; c) = w � c > 0:
To construct the cuto¤ equilibrium, �rst, suppose lim�̂!�min U(�̂j�̂; I; c) � 0: Then, by the

MLR property, lim�̂!�min U(�j�̂; I; c) � 0 for any � and, by Claim 1, U(�̂j�̂; I; c) � 0 for any
�̂: Thus, the equilibrium cuto¤ is �min; that is, the equilibrium strategy is such that si(�) = 1

for all �: Second, consider the case where lim�̂!�min U(�̂j�̂; I; c) < 0; then, by Claim 1, there

exists a unique �̂ 2 int(�) such that U(�̂j�̂; I; c) = 0 and this is the equilibrium cuto¤ type.

Claim 3. Suppose (1 + �)G(��) < 1: There exits a cuto¤ equilibrium if I is su¢ ciently

large.

Note that, whenever no one takes the test, all candidates who do not take the test are

indi¤erent for the DM. Moreover, if (1+�)G(��) < 1; the DM�s expected payo¤ from choos-

ing any candidate is strictly larger than 0. Then, suppose the DM selects each candidate

with the same probability, 1
I
; when no one takes the test. Observe that, given a cuto¤ strat-

egy with �̂ � ��, the expected payo¤ of each candidate from "not taking test" is w
I
G(�̂)I�1

if
R
�i��� ��̂(�ij?)d�i > �

R
�i<�

� ��̂(�ij?)d�i: On the other hand, the expected payo¤ is 0 ifR
�i��� ��̂(�ij?)d�i < �

R
�i<�

� ��̂(�ij?)d�i: Note that
R
�i��� ��̂(�ij?)d�i > �

R
�i<�

� ��̂(�ij?)d�i
for large �̂ since (1 + �)G(��) < 1: Moreover, it is easy to see that the expected pay-

o¤ from "not taking test" is increasing in �̂: Then, since w
I
G(�̂)I�1 is increasing in �̂ and

lim�̂!�max
w
I
G(�̂)I�1 = w

I
; we have lim�̂!�maxfU(�̂j�̂; I; c)�

w
I
G(�̂)I�1g > 0 for I > w

w�c :

Now, choose a large I so that lim�̂!�� U(�̂j�̂; I; c) < 0: Then, since U(�̂j�̂; I; c)�w
I
G(�̂)I�1 <

0 for small �̂ > ��; there exists �̂ 2 (��; �max) such that U(�̂j�̂; I; c) = w
I
G(�̂)I�1: If

R
�i��� ��̂(�ij?)d�i >

�
R
�i<�

� ��̂(�ij?)d�i for such �̂; then let such �̂ be the equilibrium cuto¤ type. Otherwise, let
the solution of U(�̂j�̂; I; c) = 0 be the equilibrium cuto¤ type. Q.E.D.

To get an intuition of condition (1 + �)G(��) > 1; suppose that the DM has to make his

decision only based on the prior probability. Then, the DM strictly prefers "rejecting all"

9
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to "random choice" if and only if (1 + �)G(��) > 1: Hence, there exists a unique testing

equilibrium whenever the DM prefers not to select any candidate without information. If

(1 + �)G(��) < 1, the existence of testing equilibrium is not guaranteed for small I. For

example, there is no testing equilibrium if (1 + �)G(��) < 1 and I = 1:

As we mentioned before, the optimal selection rule is the DM�s equilibrium strategy. To

be more explicit, whenever a testing equilibrium exists, the optimal selection rule is

r�(z1; z2; ::; zI) =

8<: i if xi � xj for any j and xi � x(�̂(c; I))

? if, for any j 2 I; xj < x(�̂(c; I))
:

where �̂(c; I) is the equilibrium cuto¤ type in the testing equilibrium given c and I:

Note that the selection rule is based on both absolute and relative performances. More-

over, the minimum performance criterion x(�̂(c; I)) depends on the cost of test c and the

size of candidate pool I: Then, the next section analyzes the optimal size I for the optimal

selection rule.

4 Optimal candidate pool

In the last section, we derived the optimal selection rule given I and c: This section focuses on

the case in which there exists a unique testing equilibrium, i.e. (1+�)G(��) > 1; and analyzes

the optimal size of candidate pool. We assume that testing is costly for the DM. Concretely,

suppose that the testing costs � > 0 per candidate for the DM. Then, let W (I; �) denote

the ex ante expected payo¤ of the DM in which candidates play the testing equilibrium.

Then, optimal candidate pool I� is de�ned to be the size of candidate pool such that

W (I�; �) � W (I; �) for any I:
The optimal size of candidate pool is analyzed in two cases. First, we analyze the case

in which cost c is �xed, e.g., c is the cost of a standard test. Second, we analyze the case in

which the DM can control both I and c.

4.1 Optimal candidate pool given c

Suppose that the DM chooses I to maximize his expected payo¤ given c: The next lemma

clari�es the relationship between the equilibrium cuto¤ type and the size of candidate pool.

Let �̂(c; I) be the equilibrium cuto¤ given c and I:

10
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Lemma 3. Given c; �̂(c; I) is increasing in I: Moreover, there exists I 0 such that �̂(c; I)

is strictly increasing in I > I 0:

Proof. Given a cuto¤ strategy pro�le, Pr(xi � xj;8jj�̂; I) > Pr(xi � xj;8jj�̂; I + 1):
Hence, U(�̂j�̂; I; c) > U(�̂j�̂; I + 1; c): Note that, from Claim 1 in the proof of Proposition

1, U(�̂j�̂; I; c) is strictly increasing in �̂: Then, if there exists a solution of U(�̂j�̂; I; c) = 0;
the solution of U(�̂j�̂; I + 1; c) = 0 is strictly higher. Hence, if �̂(c; I) 2 int(�); then,

�̂(c; I) < �̂(c; I + 1). On the other hand, if �̂(c; I) = �min; then, �̂(c; I) � �̂(c; I + 1):
For the second part, observe that lim�̂!�min U(�̂j�̂; I; c) < 0 if I is su¢ ciently large,

then �̂(c; I) 2 int(�) for such I: Thus, if I 0 is de�ned to be the smallest I such that

lim�̂!�min U(�̂j�̂; I; c) < 0; �̂(c; I) is strictly increasing in I > I
0: Q.E.D.

Remark. Any I <1; �̂(c; I) < �max:

Lemma 3 says that if there exists a pooling equilibrium in which all types take the test

for small I; then, there exists I from which the testing equilibrium is semi-pooling for larger

I.

The next lemma shows that larger candidate pool always increases the probability of

"successful selection" as long as the size of candidate pool is smaller than a certain level.

Let

Î(c) = maxfIj�(c; I) < ��g:

Moreover, let �+(I; �̂) be the probability that the DM selects a candidate with � � ��given
I and �̂:

Lemma 4. �+(I; �̂(c; I)) < �+(I + 1; �̂(c; I + 1)) for I � Î(c) and �+(I; �̂(c; I)) =

1�G(�̂(c; I))I for I > Î(c):

Proof. To prove the �rst part, note the probability that the DM selects candidate i and

�i � � is

qi(I; �̂) =

Z
xi�x(�̂)

Z
�i>maxf�̂;��g

Pr(xi � xj;8jj�̂; I)f(xij�i)dG(�i)dxi:

Then, by symmetry, �+(I; �̂) =
P

i qi(I; �̂) = Iqi(I; �̂):
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Claim 1. �+(I; �̂) is increasing in I given �̂:

To prove the claim, let �+(I; �̂; x) be

�+(I; �̂; x) =

8<: I
R
�i�maxf�̂;��g Pr(xi = x � xj;8jj�̂; I)f(xij�i)dG(�i) x � x(�̂)

0 if x < x(�̂)
:

Then, for x; x0 � x(�̂);

�+(I; �̂; x)

�+(I; �̂; x0)
=
I
R
�i�maxf�̂;��g

�R
�j
H(xj�j; �̂)dG(�j)

�I
f(xj�i)dG(�i)

I
R
�i�maxf�̂;��g

�R
�j
H(x0j�j; �̂)dG(�j)

�I
f(x0j�i)dG(�i)

�+(I + 1; �̂; x)

�+(I + 1; �̂; x0)
=
(I + 1)

R
�i�maxf�̂;��g

�R
�j
H(xj�j; �̂)dG(�j)

�I+1
f(xj�i)dG(�i)

(I + 1)
R
�i�maxf�̂;��g

�R
�j
H(x0j�j; �̂)dG(�j)

�I+1
f(x0j�i)dG(�i)

By the MLR property, if x0 > x; thenZ
�j

H(xj�j; �̂(c; I))dG(�j) <
Z
�j

H(x0j�j; �̂(c; I))dG(�j):

and thus
�+(I; �̂; x)

�+(I; �̂; x0)
� �+(I + 1; �̂; x)

�+(I + 1; �̂; x0)
:

and the inequality is strict for x0 > x(�̂)

Hence, Z
xi�x(�̂)

�+(I + 1; �̂; xi)dxi >

Z
xi�x(�̂)

�+(I; �̂; xi)dxi:

Claim 2. �+(I; �̂) is increasing in �̂ < �
� given I:

For �̂ < ��; �̂ a¤ects �+(I; �̂) through two channels, i.e., Pr(xi � xj;8jj�̂; I) and x(�̂):
First, observe that since the number of competitors becomes smaller, Pr(xi � xj;8jj�̂; I) is
increasing in �̂: Second, as we see in Claim 1 in the proof of Proposition 1, x(�̂) is decreasing

in �̂. Hence, �+(I; �̂) is increasing in �̂ < �
�:

Claim 3. �+(I; �̂(c; I)) < �+(I + 1; �̂(c; I + 1)) for I � Î(c):

12
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First, by Claim 1, �+(I; �̂(c; I)) < �+(I + 1; �̂(c; I)): Note that �̂(c; I) < �
� for all I �

Î(c): Then, by Claim 2, �+(I + 1; �̂(c; I)) < �+(I + 1; �̂(c; I + 1)) for I � Î(c): Hence,

�+(I; �̂(c; I)) < �+(I + 1; �̂(c; I + 1)) for I � Î(c):

For the second part, note that if I > Î(c); then �� � �̂(c; I) and thus x(�̂) = x: Hence,
whenever the DM fails to select a quali�ed candidate, this is only because no one takes the

test. Then, the probability of such event is G(�̂(c; I))I : Q.E.D.

To get an intuition of Lemma 4, note that, if I � Î ; not only quali�ed types but also

unquali�ed types take the test. Then, when the number of candidates becomes larger, the

chance that a quali�ed candidate outperforms other candidates becomes higher. Moreover,

as we showed in Lemma 3, when the number of candidates is larger, the set of unquali�ed

types who take the test becomes smaller in equilibrium. Hence, more competition increases

the probability of "successful selection." When I > Î(c); candidates who take the test are

all quali�ed types in equilibrium. Hence, as long as some candidates take the test, the DM

can select a quali�ed type. On the other hand, if I > Î(c); quali�ed types in [��; �̂(c; I)) do

not take the test in equilibrium. Hence, if all quali�ed types in the candidate pool are in

[��; �̂(c; I)); no one takes the test and the DM cannot select any quali�ed candidate.

The next lemma claims that, whenever the size of candidate pool is su¢ ciently large, the

probability of selecting a unquali�ed candidate is zero. Let ��(I; �̂) be the probability that

the DM selects a candidate whose type is � < ��:

Lemma 5. ��(I; �̂(c; I)) > 0 for I � Î(c) and ��(I; �̂(c; I)) = 0 if I > Î(c):

Proof. Observe that, by the similar reasoning as �+(I; �̂);

��(I; �̂) = I

Z
xi�x(�̂)

Z
�i2[minf�̂;��g;��]

Pr(xi � xj;8jj�̂; I)f(xij�i)dG(�i)dxi

First, if I � Î(c) , then �̂(c; I) < ��: Thus, ��(I; �̂(c; I)) > 0: Second, if I > Î(c); then
minf�̂; ��g = �� and thus ��(I; �̂(c; I)) = 0 for any I: Q.E.D.

The idea of Lemma 5 is as follows. When I > Î(c); only quali�ed types take the test in

the testing equilibrium. Note that, since (1 + �)G(��) > 1; the DM selects a candidate only

if he takes the test. Then, no candidate whose type is � < �� can be selected.
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Remark. It is not obvious that ��(I; �̂(c; I)) is decreasing in I � Î(c): To see the reason,
observe that the minimum level of performance for the selection x(�̂(c; I)) is decreasing in

I: Thus, the probability that unquali�ed types can satisfy the minimum performance level

becomes higher. Then, even though the probability that unquali�ed types take the test is

smaller for larger I � Î(c), the net e¤ect on ��(I; �̂(c; I)) is not obvious.

Before the main result of this section, we need to establish the following lemma. Let

�(I; �; c) = 1�G(�̂(c; I))I � �I:

Lemma 6. If there exists I > Î(c) such that G(�̂(c; I))I � G(�̂(c; I + 1))I+1 > �; then
there exists eI(�) <1 such that eI(�) > Î(c) and �(eI(�); �; c) � �(I 0; �; c) for any I 0 > Î(c).
Proof. Note that �(I+1; �; c)��(I; �; c) = G(�̂(c; I))I�G(�̂(c; I+1))I+1� � if I > Î(c):

Then, by Lemma 3, G(�̂(c; I))I �G(�̂(c; I + 1))I+1 < G(�̂(c; I))I(1�G(�̂(c; I)). Note that,
since limI!1G(�̂(c; I)) = 1; G(�̂(c; I))

I �G(�̂(c; I+1))I+1 < � for su¢ ciently large I: Then,
given �; there existsmaxI>Î(c) �(I; �; c) and, then, let eI(�; c) = argmaxI>Î(c) �(I; �; c): Q.E.D.
The next proposition provides the properties of the optimal candidate pool.

Proposition 2. Let I� be the optimal size of candidate pool.

(i) I� � eI(�; c):
(ii) For su¢ ciently small �; I� = Î(c) or eI(�; c):
(iii) For su¢ ciently small � and su¢ ciently large �; I� = eI(�; c):
Proof. Note that

W (I; �) = �+(I; �̂(c; I))� ���(I; �̂(c; I))� �I:

(i) To see the upper bound of I�; recall that, by Lemma 4, �+(I; �̂(c; I)) = 1�G(�̂(c; I))I

for any I > Î(c): Moreover, by Lemma 5, ��(I; �̂(c; I)) = 0 whenever I > Î(c) . Hence,

W (I; �) = 1�G(�̂)I � �I for I > Î(c): Then, by Lemma 6, I� = eI(�; c) whenever I� > Î(c):
14
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(ii) Note that, by (i), if we establish that W (I; �) is increasing in I < Î(c); the result

immediately follows. Let Ŵ (�̂; I) be the expected payo¤ of the DM in which candidates�

strategy pro�le is �̂-cuto¤ and the number of candidates is I:

Claim 1. Given I < Î(c); Ŵ (�̂; I) is increasing in �̂ < ��:

Let y be the highest performance among candidates. First, consider �̂
0
; �̂ such that

�� > �̂
0
> �̂: Then,Z
�i���

�
�̂
0(�jy)d� � �

Z
�i<�

�
�
�̂
0(�jy)d� �

Z
�i���

��̂(�jy)d� � �
Z
�i<�

�
��̂(�jy)d�:

for any y � x(�̂0): Moreover, the inequality is strict if x(�̂0) � y < x(�̂): Hence, Ŵ (�̂0; I) �
Ŵ (�̂; I). Finally, if y < x(�̂

0
); then the DM�s payo¤ is 0 for both �̂

0
and �̂: Hence, W (�̂; I) is

increasing in �̂ < �� given I:

Claim 2. Given �̂ < ��;W (�̂; I) is increasing in I:

Again, let y be the highest performance among candidates. Then, by the MLR property,

the expected payo¤ of the DM is increasing in y:

Now, consider the distribution of y given I. To see how additional candidate a¤ects the

distribution of y; suppose we add a candidate j0 to a candidate pool with size I: Then, given

the probability of having y conditional on I; p(yjI); we can write the probability of having
y conditional on I + 1; p(yjI + 1); as follows.

p(yjI + 1) = Pr(y � xj)p(yjI)

=

Z
�j0

H(yj�j0 ; �̂)dG(�j0)p(yjI):

where

H(yj�j0 ; �̂) =

8<: F (yj�j) if �j0 > �̂

1 if �j0 < �̂

Then,

p(y0jI + 1)
p(yjI + 1) =

R
�j0
H(y0j�j0 ; �̂)dG(�j0)p(y0jI)R

�j0
H(yj�j0 ; �̂)dG(�j0)p(yjI)
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Note that, by the MLR property, if y0 > y;R
�j0
H(y0j�j0 ; �̂)dG(�j0)R

�j0
H(yj�j0 ; �̂)dG(�j0)

> 1:

Hence,
p(y0jI + 1)
p(yjI + 1) �

p(y0jI)
p(yjI)

Thus, p(yjI + 1) �rst-order-stochastically dominates p(yjI): Then, since the expected
payo¤ of the DM is increasing in y; the expected payo¤ is higher in I + 1:

Therefore, from Claim 1 and Claim 2, W (I; �) is increasing in I < Î(c):

(iii) By Lemma 5, ��(I; �̂(c; I)) = 0 if I > Î(c) and ��(I; �̂(c; I)) > 0 if I � Î(c):

Hence, if � is su¢ ciently large and � is small, any I � Î(c) cannot be optimal. Then, by (i),
I� = eI(�): Q.E.D.
4.2 Optimal candidate pool with controllable cost

Now, suppose the DM can choose both I and c to maximize his interest.

Lemma 7. �̂(c; I) is increasing and continuous in c: Moreover, there exists c0 such that

�̂(c; I) is strictly increasing in c > c0:

Proof. From Claim 1 in the proof of Proposition 1, U(�̂j�̂; I; c) is strictly increasing in
�̂: Moreover, obviously, U(�̂j�̂; I; c) is strictly decreasing in c: Thus, if there exists �̂ which
solves U(�̂j�̂; I; c) = 0; �̂ which solves U(�̂j�̂; I; c+ ") = 0 for " > 0 is strictly higher. Hence,
if �̂(c; I) 2 int(�); then, �̂(c; I) < �̂(c + "; I). On the other hand, if �̂(c; I) = �min; then,

�̂(c; I) � �̂(c + "; I): Moreover, since U(�̂j�̂; I; c) is strictly increasing and continuous in �̂;
�̂(c; I) is continuous in c:

For the second part, observe that lim�̂!�min U(�̂j�̂; I; c) < 0 if c is su¢ ciently large,

then �̂(c; I) 2 int(�) for such I: Thus, if c0 is de�ned to be the smallest c such that

lim�̂!�min U(�̂j�̂; I; c) � 0; �̂(c; I) is strictly increasing in c > c
0: Q.E.D.

Now, let

c�(I) =

Z
xi�x(�̂)

wPr(xi � xj;8jj��; I)dF (xij��)
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The next lemma provides the "optimal cost" given I:

Lemma 8. Given I and the optimal selection rule r�; c�(I) maximizes the DM�s expected

payo¤.

Proof. Observe that �̂(c�(I); I) = ��: First, if c < c�(I); then, from Lemma 7, the

probability that the DM selects a candidate with � < �� is strictly positive. Second, if

c > c�(I); then, �� < �̂(c; I) from Lemma 7. Thus, when all quali�ed candidates are in

[��; �̂(c; I)]; the DM fails to select any quali�ed candidates. If c = c�(I); the probability that

the DM selects a candidate with � < �� is 0. Moreover, whenever there are some quali�ed

candidates in the candidate pool, the probability that the DM selects one of them is 1.

Q.E.D.

Remark. Since the expected payo¤ of the cuto¤ type is decreasing in I; c�(I) is also

decreasing in I:

Now, we are ready to derive the optimal size of candidate pool. The next proposition

shows that, when c is controllable, we can easily pin down the optimal size. Let

�I(�) = argmax
I
f1�G(��)I � �Ig:

Proposition 3. I� = �I(�):

Proof. By Lemma 8, the DM chooses c�(I) given I: Then, for any I; the DM fails to

select any quali�ed candidate only if there is no candidate in the candidate pool. Since the

probability of such event isG(��)I ; the expected payo¤of the DM from c�(I) is 1�G(��)I��I:
Thus, the optimal size of candidate pool is �I(�): Q.E.D.

Proposition 3 says that whenever the DM can control both c and I; the optimal size of

candidate pool only depends on G(��) and �: To see why the optimal size does not depend

on other factors such as test technology f and payo¤ parameter w; recall that, when the DM

maximizes his expected payo¤, he chooses c = c�(I�). Then, c�(I�) re�ects f and w:
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5 Selection power

This section analyzes the relationship between the size of candidate pool and "selection

power" of the procedure given cost c and test technology f: We de�ne selection power to

be the probability that the selected candidate is � � �� given I; that is, Pr(�r � ��jr 6= ?; I):
Then, let I(") be the smallest I in which the selection power is at least 1� ": Formally,

I(") =

8<: minfIj1� " < Pr(�r � ��jr 6= ?; I)g if fIj1� " < Pr(�r � ��jr 6= ?; I)g 6= ;

? if fIj1� " < Pr(�r � ��jr 6= ?; I)g = ;
:

The following proposition provides the properties of I("):

Proposition 4. Suppose (1 + �)G(��) > 1: For any " > 0; I (") � Î(c) + 1: Moreover,
I(") = Î(c) + 1 for su¢ ciently small " > 0:

Proof. Observe that, if I > Î(c); all candidates who take the test are � � ��: Hence,

whenever the DM selects a candidate, he is � � ��: That is, Pr(�r � ��jr 6= ?; I)g = 1

for any I > Î(c): Therefore, for any " > 0; I(") � Î(c) + 1. On the other hand, note

that, for any I � Î(c); the probability that the DM selects � 2 [�̂(c; I); ��) is positive.

Hence, Pr(�r � ��jr 6= ?; I) < 1 for any I � Î(c): Thus, for su¢ ciently small " > 0;

Pr(�r � ��jr 6= ?; I)g < 1 � " for all I � Î(c): Therefore, I(") = Î(c) + 1 for su¢ ciently

small " > 0: Q.E.D.

In the rest of this section, we compare our selection procedure with a purely statistical

selection procedure in terms of I("): A selection procedure is passive selection procedure

if it is mandatory for candidates to take the test. More preciously, in the passive selection

procedure, zi = xi for all i: Thus, the signal generating process is exogenous and there is no

signaling element in the selection procedure. Let IP (") be the minimum size of candidate

pool for the passive selection procedure to attain 1� ": To distinguish our procedure to the
passive procedure, let us call our procedure "strategic selection procedure."

Proposition 5. Suppose (1 + �)G(��) > 1:

(i) IP (") � I("):
(ii) There exists "̂ < 1 such that IP ("̂) = ? for any " < "̂:
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Proof. Let Pr(xi � xj;8jj�min; I) be Pr(xi � xj;8jj�̂; I) with �̂ = �min and x(�min) be

x(�̂) with �̂ = �min: Then, in the passive procedure, the probability that r = i and �i � �� is

qi(I; �min) =

Z
xi�x(�min)

Z
�i���

Pr(xi � xj;8jj�min; I)f(xij�i)dG(�i)dxi:

Then, Pr(�r � �� : �min; I) =
P

i qi(I; �min) = Iqi(I; �min):

Turning to the strategic selection procedure, suppose candidate i takes the test. Then,

the probability that r = i and �i � �� is

qi(I; �̂) =

Z
xi�x(�̂)

Z
�i���

Pr(xi � xj;8jj�̂; I)f(xij�i)dG(�ij�i � �̂)dxi:

Then, Pr(�r � �� : �̂; I) =
P

i qi(I; �̂) = Iqi(I; �̂):

First, it is easy to see that Pr(xi � xj;8jj�min; I) � Pr(xi � xj;8jj�̂; I): Second,
x(�min) � x(�̂). Moreover, G(�ij�i � �̂) �rst-order-stochastically dominates G(�i): Hence,

Pr(�r � �� : �min; I) � Pr(�r � �� : �̂; I). That is, whenever I 0 = IP ("); Pr(�r � �� : �̂; I 0) <
1� ":

(ii) First, by the analogous argument to the proof in Lemma 4, we can show that Pr(�r �
�� : �min; I) is increasing in I: Then, since the highest performance converges to �x as I !1;
whenever the DM selects a candidate,

lim
I!1

Pr(�r > �
� : �min; I) =

Z
�>��

f(�xj�)g(�)R
�0 f(�xj�

0)g(�0)d�0
d� < 1:

Let "̂ = 1 � limI!1 Pr(�r > �
� : �min; I): Then, for any " < "̂; fIj1 � " < Pr(�r > �� :

�min; I)g = ;: Q.E.D.

An intuition of the result is the following. Since the passive selection procedure has no

signaling element, the selection power is restricted by the test technology f . On the other

hand, in the strategic selection procedure, since larger number of candidates can make the

signaling more informative, the DM can sort out quali�ed types with higher probability given

the same test technology f .

Remark. Note that, if the test is very noisy and the distribution of types has a large

mass over � < ��; we haveZ
����

f(�xj�)g(�)R
�0 f(�xj�

0)g(�0)d�0
d� < �

Z
�<��

f(�xj�)g(�)R
�0 f(�xj�

0)g(�0)d�0
d�:
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In this case, even if there is a candidate with �x; the DM rejects all candidates in the

passive selection procedure, i.e., IP (") = ? for any " < 1: On the other hand, the strategic
selection procedure can select a quali�ed candidate with a high probability in the same

environment as long as the size of candidate pool is su¢ ciently large.

Remark. Whenever testing equilibrium does not exist, i.e., (1 + �)G(��) < 1 and I

is small, the DM has to make a decision based on the prior probability. In this case, the

passive selection procedure, which utilizes test performances, can outperform the strategic

selection procedure. Hence, when � is small, the DM may prefer the passive procedure to

the strategic procedure.

6 Summary

This section summarizes the main results.

1. Whenever a testing equilibrium exists, the optimal selection rule given c and I is

r(z1; z2; ::; zI) =

8<: i if xi � xj for any j and xi � x(�̂(c; I))

? if, for any j 2 I; xj < x(�̂(c; I))

where �̂(c; I) is the equilibrium cuto¤ type.

2. Suppose (1 + �)G(��) > 1:

(a) If c is not controllable and � is su¢ ciently small; I�(�) = Î(c) or eI(�; c):Moreover,
if � is large, then I�(�) = eI(�; c):

(b) If c is controllable, I� = �I(�) and c� = c�(�I(�))

3. Suppose (1 + �)G(��) � 1: If I and � are su¢ ciently small, the DM can be better o¤

by making the test "mandatory."

7 Concluding remarks

This paper extends selection problem to a strategic environment and analyzes the property

of the optimal selection procedure. The motivation of our paper is mainly rooted in the
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practice. Unlike usual screening models which aim �perfect revelation� of each type, the

selection procedure is designed to sort out "competent" types. On the other hand, unlike

screening which requires a �exible environment to design contract, the selection procedure

can be applied to environments where the set of feasible contracts is quite restricted, e.g.,

predetermined wage and task. In other words, the approach of our paper is to formulate a

�milder�problem and develop a simple procedure which can be applicable to wider range of

environments.

There is another advantage of selection procedures. In screening models, it is assumed

that the agent knows own "type." However, when the type is "ability," such assumption

can be too strong since people are often overcon�dent about own ability. When the DM�s

interest is not in selecting a �con�dent� candidate but selecting a �quali�ed� candidate,

it is important to employ testing, which re�ects true ability, in the selection process. In

fact, many recruiting and admission processes in the real world are based on testing or past

performances.

One possible future direction of "strategic selection procedure" is to explore various

kinds of signal generating process. For example, the testing can be sequential rather than

simultaneous. That is, each candidate sequentially decides whether to take the test given

the history of other candidates�test performances. In this way, the DM may save some cost

for testing. On the other hand, it is not obvious that the DM can extract more private

information from such sequential procedure.
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