10,165 research outputs found

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data

    Get PDF
    Biomarkers which predict patient’s survival can play an important role in medical diagnosis and treatment. How to select the significant biomarkers from hundreds of protein markers is a key step in survival analysis. In this paper a novel method is proposed to detect the prognostic biomarkers ofsurvival in colorectal cancer patients using wavelet analysis, genetic algorithm, and Bayes classifier. One dimensional discrete wavelet transform (DWT) is normally used to reduce the dimensionality of biomedical data. In this study one dimensional continuous wavelet transform (CWT) was proposed to extract the features of colorectal cancer data. One dimensional CWT has no ability to reduce dimensionality of data, but captures the missing features of DWT, and is complementary part of DWT. Genetic algorithm was performed on extracted wavelet coefficients to select the optimized features, using Bayes classifier to build its fitness function. The corresponding protein markers were located based on the position of optimized features. Kaplan-Meier curve and Cox regression model 2 were used to evaluate the performance of selected biomarkers. Experiments were conducted on colorectal cancer dataset and several significant biomarkers were detected. A new protein biomarker CD46 was found to significantly associate with survival time

    Population Synthesis via k-Nearest Neighbor Crossover Kernel

    Full text link
    The recent development of multi-agent simulations brings about a need for population synthesis. It is a task of reconstructing the entire population from a sampling survey of limited size (1% or so), supplying the initial conditions from which simulations begin. This paper presents a new kernel density estimator for this task. Our method is an analogue of the classical Breiman-Meisel-Purcell estimator, but employs novel techniques that harness the huge degree of freedom which is required to model high-dimensional nonlinearly correlated datasets: the crossover kernel, the k-nearest neighbor restriction of the kernel construction set and the bagging of kernels. The performance as a statistical estimator is examined through real and synthetic datasets. We provide an "optimization-free" parameter selection rule for our method, a theory of how our method works and a computational cost analysis. To demonstrate the usefulness as a population synthesizer, our method is applied to a household synthesis task for an urban micro-simulator.Comment: 10 pages, 4 figures, IEEE International Conference on Data Mining (ICDM) 201

    Effective Discriminative Feature Selection with Non-trivial Solutions

    Full text link
    Feature selection and feature transformation, the two main ways to reduce dimensionality, are often presented separately. In this paper, a feature selection method is proposed by combining the popular transformation based dimensionality reduction method Linear Discriminant Analysis (LDA) and sparsity regularization. We impose row sparsity on the transformation matrix of LDA through 2,1{\ell}_{2,1}-norm regularization to achieve feature selection, and the resultant formulation optimizes for selecting the most discriminative features and removing the redundant ones simultaneously. The formulation is extended to the 2,p{\ell}_{2,p}-norm regularized case: which is more likely to offer better sparsity when 0<p<10<p<1. Thus the formulation is a better approximation to the feature selection problem. An efficient algorithm is developed to solve the 2,p{\ell}_{2,p}-norm based optimization problem and it is proved that the algorithm converges when 0<p20<p\le 2. Systematical experiments are conducted to understand the work of the proposed method. Promising experimental results on various types of real-world data sets demonstrate the effectiveness of our algorithm
    corecore